Page 7 of 9
ACS Catalysis
Aryl/Heteroaryl Chlorides with Zn(CN)2: Key Roles of DMAP. Org. Lett.
Z. Y.; Liu, G. S.; Enantioselective Decarboxylative Cyanation Employing
Cooperative Photoredox Catalysis and Copper Catalysis. J. Am. Chem. Soc.
2017, 139, 15632-15635. (z) Zhang, W.; Wang, F.; McCann, S. D.; Wang,
D. H.; Chen, P. H.; Stahl, S. S.; Liu, G. S. Enantioselective Cyanation of
Benzylic C–H Bonds via Copper-Catalyzed Radical Relay. Science, 2016,
353, 1014-1018. (aa) Zhu, X. T.; Deng, W. L.; Chiou, M. F.; Ye, C. Q.;
Jian, W. J.; Zeng, Y. H.; Jiao, Y. H.; Ge, L.; Li, Y. J.; Zhang, X. H.; Bao,
H. L. Copper-Catalyzed Radical 1,4-Difunctionalization of 1,3-Enynes with
Alkyl Diacyl Peroxides and N‑Fluorobenzenesulfonimide. J. Am. Chem.
Soc. 2019, 141, 548-559. (ab) Chen, T. T.; Wang, A. E.; Huang, P. Q.
Chemoselective Synthesis of α‑Amino-α-cyanophosphonates by Reductive
Gem-Cyanation−Phosphonylation of Secondary Amides. Org. Lett. 2019,
21, 3808-3812. (ac) Arriba, A. L. F.; Lenci, E.; Sonawane, M.; Formery,
O.; Dixon, D. J. Iridium-Catalyzed Reductive Strecker Reaction for Late-
Stage Amide and Lactam Cyanation. Angew. Chem. Int. Ed., 2017, 56,
3655-3659. (ad) McManus, J. B.; Nicewicz, D. A. Direct C–H Cyanation
of Arenes via Organic Photoredox Catalysis. J. Am. Chem. Soc.2007, 139,
2880-2883. (ae) Kurono, N.; Ohkuma, T.; Catalytic Asymmetric Cyanation
Reactions. ACS Catal. 2016, 6, 989-1023.
(5) (a) Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. Cu(II)-Catalyzed
Functionalizations of Aryl C-H Bonds Using O2 as an Oxidant. J. Am.
Chem. Soc. 2006, 128, 6790-6791. (b) Kim, J.; Chang, S. A New Combined
Source of “CN” from N, N-Dimethylformamide and Ammonia in the
Palladium-Catalyzed Cyanation of Aryl C-H Bonds. J. Am. Chem. Soc.
2010, 132, 10272-10274. (c) Ding, S.; Jiao, N. Direct Transformation of N,
N-Dimethylformamide to CN: Pd-Catalyzed Cyanation of Heteroarenes via
C-H Functionalization. J. Am. Chem. Soc. 2011, 133, 12374-12377. (d) Qin,
C.; Jiao, N. Iron-Facilitated Direct Oxidative C-H Transformation of
Allylarenes or Alkenes to Alkenyl Nitriles. J. Am. Chem. Soc. 2010, 132,
15893-15895. (e) Zhang, G.; Ren, X.; Chen, J.; Hu, M.; Cheng, J. Copper-
Mediated Cyanation of Aryl Halide with the Combined Cyanide Source.
Org. Lett. 2011, 13, 5004-5007. (f) Yang, L.; Liu, Y, T.; Park, Y.; Park, S.
W.; Chang, S. Ni-Mediated Generation of “CN” Unit from Formamide and
Its Catalysis in the Cyanation Reactions. ACS Catal. 2019, 9, 3360-3365.
(6) (a) Abla, M.; Yamamoto, T. Oxidative Addition of C-CN Bond to
Nickel(0) Complex: Synthesis and Crystal Structures of Ni(CN)(o-
C6H4CN)(bpy) and Ni(CN)( p- C6H4CN)(bpy). J. Organomet. Chem, 1997,
532, 267-270. (b) Evans, M. E.; Li, T.; Jones, W. D. C-H vs C-C Bond
Activation of Acetonitrile and Benzonitrile via Oxidative Addition:
Rhodium vs Nickel and Cp* vs Tp′ (Tp′ = Hydrotris(3,5-dimethylpyrazol-
1-yl) borate, Cp*= η5-Pentamethylcyclopentadienyl). J. Am. Chem. Soc.
2010, 132, 16278-16284. (c) Munjanja, L.; Torres-Lopez, C.; Brennessel,
W. W.; Jones, W. D. C-CN Bond Cleavage Using Palladium Supported by
a Dippe Ligand. Organometallics, 2016, 35, 2010-2013. (d) Garcia, J. J.;
Jones, W. D. Reversible Cleavage of Carbon-Carbon Bonds in Benzonitrile
Using Nickel (0). Organometallics, 2000, 19, 5544-5545. (e) Garcia, J. J.;
Brunkan, N. M.; Jones, W. D. Cleavage of Carbon-Carbon Bonds in
Aromatic Nitriles Using Nickel (0). J. Am. Chem. Soc. 2002, 124, 9547-
9555. (f) Miscione, G. P.; Bottoni, A. C-CN vs C-H Activation: Actual
Mechanism of the Reaction between [(dippe)PtH]2 and Benzonitrile
Evidenced by a DFT Computational Investigation. Organometallics, 2014,
33, 4173-4182. (g) Watson, M. P.; Jacobsen, E. N. Asymmetric
Intramolecular Arylcyanation of Unactivated Olefins via C-CN Bond
Activation. J. Am. Chem. Soc. 2008, 130, 12594-12595.
2017, 19, 2118-2121. (ac) Fier, P. S. A Bifunctional Reagent Designed for
the Mild, Nucleophilic Functionalization of Pyridines. J. Am. Chem. Soc.
2017, 139, 9499-9502.
1
2
3
4
5
6
7
8
(4) Selected examples of using TMSCN or acetone cyanohydrin as a reagent:
(a) Tsuji, Y., Kusui, T.; Kojima, T.; Sugiura, Y.; Yamada, N.; Tanaka, S.;
Ebihara, M.; Kawamura, T. Palladium-Complex-Catalyzed Cyanation of
Allylic Carbonates and Acetates Using Trimethylsilyl Cyanide.
Organometallics. 1998, 17, 4835-4841. (b) Sundermeier, M.; Zapf, A.;
Beller, M. A Convenient Procedure for the Palladium Catalyzed Cyanation
of Aryl Halides. Angew. Chem. Int. Ed. 2003, 42, 1661-1664. (c) Anbarasan,
P.; Neumann, H.; Beller, M. A General Rhodium-Catalyzed Cyanation of
Aryl and Alkenyl Boronic Acids. Angew. Chem. Int. Ed. 2011, 50, 519-522.
(d) Dohi, T.; Morimoto, K.; Kiyono, Y.; Tohma, H.; Kita, Y. Novel and
Direct Oxidative Cyanation Reactions of Heteroaromatic Compounds
Mediated by A Hypervalent Iodine(III) Reagent. Org. Lett. 2005, 7, 537-
540. (e) Ye, F.; Chen, J. T.; Ritter, T. Rh-Catalyzed Anti-Markovnikov
Hydrocyanation of Terminal Alkynes. J. Am. Chem. Soc. 2017, 139, 7184-
7187. (f) Greef, M.; Breit, B. Self-Assembled Bidentate Ligands for the
Nickel-Catalyzed Hydrocyanation of Alkenes. Angew. Chem. Int. Ed. 2009,
48, 551-554. (g) Falk, A.; Göderz, A. L.; Schmalz, H. G. Enantioselective
Nickel-Catalyzed Hydrocyanation of Vinylarenes Using Chiral Phosphine–
Phosphite Ligands and TMS-CN as a Source of HCN. Angew. Chem., Int.
Ed., 2013, 52, 1576-1580. (h) Arai, S.; Amako, Y.; Yang, X.; Nishida, A.
Hydrocyanative Cyclization and Three-Component Cross-Coupling
Reaction between Allenes and Alkynes under Nickel Catalysis. Angew.
Chem., Int. Ed., 2013, 52, 8147-8150. (i) Lu, F. D.; Liu, D.; Zhu, L.; Lu, L.
Q.; Yang, Q.; Zhou, Q. Q.; Wei, Y.; Lan, Y.; Xiao, W. J. Asymmetric
Propargylic Radical Cyanation Enabled by Dual Organophotoredox and
Copper Catalysis. J. Am. Chem. Soc. 2019, 141, 6167-6172. (j) Gao, D. W.;
Vinogradova, E. V.; Nimmagadda, S. K.; Medina, J. M.; Xiao, Y. Y.; Suciu,
R. M.; Cravatt, B. F.; Engle, K. M. Direct Access to Versatile Electrophiles
via Catalytic Oxidative Cyanation of Alkenes. J. Am. Chem. Soc. 2018, 140,
8069-8073. (k) Tanaka, Y.; Kanai, M.; Shibasaki, M. Catalytic
Enantioselective Construction of β-Quaternary Carbons via a Conjugate
Addition of Cyanide to β, β-Disubstituted α, β-Unsaturated Carbonyl
Compounds. J. Am. Chem. Soc. 2010, 132, 8862-8863. (l) Tanaka, Y.;
Kanai, M.; Shibasaki, M. A. Catalytic Enantioselective Conjugate Addition
of Cyanide to Enones. J. Am. Chem. Soc. 2008, 130, 6072-6073. (m) Wang,
J.; Wang, W.; Li, W.; Hu, X.; Shen, K.; Tan, C.; Liu, X.; Feng, X. M.
Asymmetric Cyanation of Aldehydes, Ketones, Aldimines, and Ketimines
Catalyzed by a Versatile Catalyst Generated from Cinchona Alkaloid
Achiral Substituted 2,2’-Biphenol and Tetraisopropyl Titanate. Chem. Eur.
J. 2009, 15, 11642-11659. (n) Zhang, J.; Liu, X.; Wang, R. Magnesium
Complexes as Highly Effective Catalysts for Conjugate Cyanation of α, β-
Unsaturated Amides and Ketones. Chem. Eur. J. 2014, 20, 4911-4915. (o)
Sammis, G. M.; Danjo, H.; Jacobsen, E. N. Cooperative Dual Catalysis:
Application to the Highly Enantioselective Conjugate Cyanation of
Unsaturated Imides. J. Am. Chem. Soc. 2004, 126, 9928-9929. (p) Ryu, D.
H.; Corey, E. J. Highly Enantioselective Cyanosilylation of Aldehydes
Catalyzed by a Chiral Oxazaborolidinium Ion. J. Am. Chem. Soc. 2004, 126,
8106-8107. (q) Guo, Q. P.; Wang, M. R.; Peng, Q.; Huo, Y. M.; Liu, Q.;
Wang, R.; Xu, Z. Q. Dual-Functional Chiral Cu-Catalyst-Induced
Photoredox Asymmetric Cyanofluoroalkylation of Alkenes. ACS Catal.
2019, 9, 4470-4476. (r) Wang, X.; Studer, A. Metal-Free Direct C-H
Cyanation of Alkenes. Angew. Chem. Int. Ed., 2018, 57, 11792-11796. (s)
Jiao, Y. H.; Chiou, M. F.; Li, Y. J.; Bao, H. L. Copper-Catalyzed Radical
Acyl-Cyanation of Alkenes with Mechanistic Studies on the tert-Butoxy
Radical. ACS Catal. 2019, 9, 5191-5197. (t) Lennox, A. J. J.; Goes, S. L.;
Webster, M. P.; Koolman, H. F.; Djuric, S. W.; Stahl, S. S. Electrochemical
Aminoxyl-Mediated α‑Cyanation of Secondary Piperidines for
Pharmaceutical Building Block Diversification. J. Am. Chem. Soc. 2018,
140, 11227-11231. (u) Sha, W. X.; Deng, L. L.; Ni, S. Y.; Mei, H. B.; Han,
J. L.; Pan, Y. Merging Photoredox and Copper Catalysis: Enantioselective
Radical Cyanoalkylation of Styrenes. ACS Catal. 2018, 8, 7489-7494. (v)
Shibuya, M.; Okamoto, M.; Fujita, S.; Abe, M.; Yamamoto, Y. Boron-
Catalyzed Double Hydrofunctionalization Reactions of Unactivated
Alkynes. ACS Catal. 2018, 8, 4189-4193. (w) Nauth, A. M.; Schechtel, E.;
Doren, R.; Tremel, W.; Opatz, T. TiO2 Nanoparticles Functionalized with
Non-innocent Ligands Allow Oxidative Photocyanation of Amines with
Visible/Near-Infrared Photons. J. Am. Chem. Soc. 2018, 140, 14169-14177.
(x) Yang, S. B.; Wang, L. H.; Zhang, H. W.; Liu, C. Y.; Zhang, L. L.; Wang,
X. Y.; Zhang, G.; Li, Y.; Zhang, Q. Copper-Catalyzed Asymmetric
Aminocyanation of Arylcyclopropanes for Synthesis of γ-Amino Nitriles.
ACS Catal. 2019, 9, 716-721. (y) Wang, D. H.; Zhu, N.; Chen, P. H.; Lin,
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) Selected examples to install cyano group via C-CN cleavage: (a) Nakao,
Y.; Oda, S.; Hiyama, T. Nickel-Catalyzed Arylcyanation of Alkynes. J. Am.
Chem. Soc. 2004, 126, 13904-13905. (b) Nakao, Y.; Yada, A.; Ebata, S.;
Hiyama, T. A Dramatic Effect of Lewis-Acid Catalysts on Nickel-
Catalyzed Carbocyanation of Alkynes. J. Am. Chem. Soc. 2007, 129, 2428-
2429. (c) Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi,
M.; Ogoshi, S. Nickel/Lewis Acid-Catalyzed Cyanoesterification and
Cyanocarbamoylation of Alkynes. J. Am. Chem. Soc. 2010, 132, 10070-
10077. (d) Nakai, K.; Kurahashi, T.; Matsubara, S. Nickel-Catalyzed
Cycloaddition of o-Arylcarboxybenzonitriles and Alkynes via Cleavage of
Two Carbon-Carbon σ Bonds. J. Am. Chem. Soc. 2011, 133, 11066-11068.
(e) Koester, D. C.; Kobayashi, M.; Werz, D. B.; Nakao, Y. Intramolecular
Oxycyanation of Alkenes by Cooperative Pd/BPh3 Catalysis. J. Am. Chem.
Soc. 2012, 134, 6544-6547. (f) Miyazaki, Y.; Ohta, N. Semba, K.; Nakao,
Y. Intramolecular Aminocyanation of Alkenes by Cooperative
Palladium/Boron Catalysis. J. Am. Chem. Soc. 2014, 136, 3732-3735. (g)
Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S.
Intramolecular Arylcyanation of Alkenes Catalyzed by Nickel/AlMe2Cl. J.
Am. Chem. Soc. 2008, 130, 12874-12875. (h) Nakao, Y.; Yada, A.; Hiyama,
T. Heteroatom-Directed Alkylcyanation of Alkynes. J. Am. Chem. Soc.
2010, 132, 10024-10026.
ACS Paragon Plus Environment