4
Tetrahedron Letters
References and notes
1 Castagnoli, N., Jr. J. Org. Chem. 1969, 34, 3187–3189.
2
onz lez- pez, M.; Shaw, J. T. Chem. Rev. 2009, 109, 164–189.
3 Krasavin, M.; Dar’in, D. Tetrahedron Lett. 2016, 57, 1635–1640.
4 Haimova, M. A.; Mollov, N. M.; Ivanova, S. C.; Dimitrova, A. I.;
Ognyanov, V. I. Tetrahedron 1977, 33, 331–336.
5 Cushman, M.; Gentry, J.; Dekow, F. W. J. Org. Chem. 1977, 42, 1111–
1116.
6Ng, P. Y.; Tang, Y.; Knosp, W. M. Stadler, H. S.; Shaw, J. T. Angew. Chem.
Int. Ed. 2007, 46, 5352–5355.
7 Nguyen, T. X.; Abdelmalak, M.; Marchand, C.; Agama, K.; Pommier, Y.;
Cushman, M. J. Med. Chem. 2015, 58, 3188–3208.
8 Cinelli, M. A.; Reddy, P. V. N.; Lv, P.-C.; Liang, J.-H.; Chen, L.; Agama,
K.; Pommier, Y.; van Breemen, R. B.; Cushman, M. J. Med. Chem. 2012,
55. 10844–10862.
9 Chatterjee, M.; Hartung, A.; Holzgrabe, U.; Mueller, E.; Peinz, U.; Sotriffer,
C.; Zilian, D. (Julius-Maximilians-Universität Würzburg, Germany),
WO2015185114A1, p 38.
10 Jiménez-Díaz, M.–B.; Ebert, D.; Salinas, Y.; Pradhan, A.; Lehane, A. M.;
Myrand-Lapierre, M.-E.; O’ oughlin, K. .; Shackleford, D. M.; age de
Almeida, M. J.; Clark, J.; Dennis, A. S. M.; Diep, J.; Deng, X.; Endsley, A.
N.; Fedewa, G.; Guiguemde, A.; Gomez-Lorenzo, M. G.; Holbrook, G.;
Horst, J.; Kim, K., Liu,J., Lee, M. C. S., Matheny, A., Martínez, M. S.,
Miller, G., Rodriguez-Alejandre, A., Sanz, L., Sigal, M.; Spillman, N. J.;
Stein, P. D.; Wang, Z.; Zhu, F.; Waterson, D.; Knapp, S.; Shelat, A. A.;
Fidock, D. A.; Gamo, F. J.; Charman, S. A.; Mirsalis, J. C.; Ma, H.; Ferrer,
S.; Kirk, K.; Angulo-Barturen, I.; Kyle, D. E.; DeRisi, J. L.; Floyd, D. M.;
Guy, R. K. Proc. Nat. Acad. Sci. 2014, 111, E5455–E5462.
11 Floyd, D. M.; Stein, P.; Wang, Z.; Liu, J.; Castro, S.; Clark, J. A.; Connelly,
M.; Zhu, F.; Holbrook, G.; Matheny, A.; Sigal, M. S.; Min, J.; Dhinakaran,
R.; Krishnan, S.; Bashyum, S.; Knapp, S.; Guy, R. K. J. Med. Chem. 2016,
59, 7950–7962.
12 https://clinicaltrials.gov/ct2/show/NCT02867059. Website viewed July 11,
2017.
13 Pattawong, O.; Tan, D. Q.; Fettinger, J. C.; Shaw, J. T.; Cheong, P. H.-Y.
Org. Lett. 2013, 15, 5130–5133.
14 Kaneti, J.; Bakalova, S. M.; Pojarlieff, I. G. J. Org. Chem. 2003, 68, 6824–
6827.
15 Jarvis, C. L.; Hirschi, J. S.; Vetticatt, M. J.; Seidel, D. Angew. Chem. Int.
Ed. 2017, 56, 2670–2674.
16 Cronin, S. A.; Collar, A. G.; Gundala, S.; Cornaggia, C.; Torrente, E.;
Manoni, F.; Botte, A.; Twamley, B.; Connon, S. J. Org. Biomol. Chem.
2016, 14, 6955–6959.
17 Yu, N.; Poulain, R.; Gesquiere, J.-C. Synlett 2000, 355–356.
18 Wang, L.; Liu, J.; Tian, H.; Qian, C.; Sun, J. Adv. Synth. Cat. 2005, 347,
689–694.
19 Vara, Y.; Bello, T.; Aldaba, E.; Arrieta, A.; Pizarro, J. L.; Arriortua, M. I.;
Lopez, X.; Cossio, F. P. Org. Lett. 2008, 10, 4759–4762.
20 Bonnaud, B.; Carlessi, A.; Bigg, D. C. H. J. Heterocycl. Chem. 1993, 30,
257–265.
Scheme 5. Trapping the Mannich intermediate 33 with base, and
formation of beta-lactam products 35 and 36.
21 Cushman, M.; Madaj, E. J. J. Org. Chem. 1987, 52, 907–915.
22 Hong, J.; Wang, Z.; Levin, A.; Emge, T. J.; Floyd, D. M.; Knapp, S.
Tetrahedron Lett. 2015, 56, 3001–3004.
3. Conclusion
23 Kandinska, M. I.; Kozekov, I. D.; Palamareva, M. D. Molecules 2006, 11,
403–414.
An open transition state (Scheme 3) best accommodates the
influence of steric bulk of the N-substituent R on the reaction of
HPA (1) with simple N-substituted benzalimines (3). For less
basic imines like 23, or for reaction conditions in which iminium
formation is less favored, the cyclic hydrogen-bonded transition
states (7 and 9, Scheme 2) may make important contributions.
An unprotonated and non-hydrogen-bonded imine is probably
relatively unreactive in this cycloaddition.
24 Liu, J.; Wang, Z.; Levin, A.; Emge, T. J.; Rablen, P. R.; Floyd, D. M.;
Knapp, S. J. Org. Chem. 2014, 79, 7593–7599.
25 Mahrwald, R. Chem. Rev. 1999, 99, 1095–1120.
26 Di Maso, M. J.; Snyder, K. M.; De Souza Fernandes, F.; Pattawong, O.;
Tan, D. Q.; Fettinger, J. C.; Cheong, P. H.-Y.; Shaw, J. T. Chem. Eur. J.
2016, 22, 4794–4801.
27 Rynard, C. M.; Thankachan, C.; Tidwell, T. T. J. Am. Chem. Soc. 1979,
101, 1196–1201.
28 Coulthard, G.; Unsworth, W. P.; Taylor, R. J. K. Tetrahedron Lett. 2015,
56, 3113–3116.
The intermediate Mannich adduct (33, Scheme 5) was
effectively intercepted by base treatment, leading to beta-lactams
35 and 36. A mechanism that proceeds through the intermediacy
of ketene 38 best accounts for their formation.
29 Wang, Y.; Liang, Y.; Jiao, L.; Du, D.-M.; Xu, J. J. Org. Chem. 2008, 71,
6983–6990.
Supplementary Material
Acknowledgments
Preparative and spectroscopic details for the N-substituent
study (Table 1) and beta-lactams 35 and 36, and CIF data for 35
and 36.
We are grateful to the NIH (AI090662) and Medicines for
Malaria Venture for financial support, and to Rutgers University
for undergraduate research support for D. P. and N. P.