phenylene-CH), 6.48 (s, 2H, CH), 2.84 (q, J = 7.8 Hz, 8H,
CH2CH3), 2.65 (q, J = 7.8 Hz, 4H, CH2CH3), 2.43 (q, J = 7.8 Hz,
4H, CH2CH3), 1.34 (t, J = 7.8 Hz, 6H, CH2CH3), 1.29 (t, J =
7.8 Hz, 6H, CH2CH3), 1.20 (t, J = 7.8 Hz, 6H, CH2CH3), 1.11 (t,
J = 7.8 Hz, 6H, CH2CH3). MALDI-TOF-MS: m/z (% intensity):
1048.26 (52), 1049.20 (100), 1050.17 (48). HRMS (ESI-TOF): m/z
(% intensity): 1049.1985. Calcd for C44H49B2F4I2N4O4 ([M − H]−):
1049.1985.
Ministry of Education, Culture, Sports, Science and Technology
(MEXT), and the “Academic Frontier” Project for Private Univer-
sities, namely the matching fund subsidy from the MEXT, 2003–
2008. The author thanks Prof. Atsuhiro Osuka, Mr Yasuhide
Inokuma, and Mr Shohei Saito, Kyoto University, for the X-
ray analyses, Prof. Hiroshi Shinokubo, Kyoto University, for ESI-
TOF-MS measurements, and Prof. Hitoshi Tamiaki, Ritsumeikan
University, for helpful discussions.
Monoiodinated derivative of 3a, 3a–I1
References
To a solution of 3a (296.4 mg, 0.321 mmol) in CH2Cl2 (80 mL)
at room temperature was added N-iodosuccinimide (72.14 mg,
0.321 mmol). The mixture was stirred at room temperature for
14 h. After confirming the consumption of the starting material by
TLC analysis, the mixture was washed with water, extracted with
CH2Cl2, dried over anhydrous MgSO4, and evaporated to dryness.
The residue was then chromatographed over silica gel flash column
(eluent: 1% MeOH–CH2Cl2) to afford 3a–I1 (122.0 mg, 41%). Rf =
0.38 (3% MeOH–CH2Cl2). 1H NMR (600 MHz, CDCl3, 20 ◦C): d
(ppm) 9.39 (s, 3H, NH), 9.29 (s, 1H, NH), 7.64 (s, 1H, phenylene-
CH), 7.60 (m, 1H, phenylene-CH), 7.51–7.42 (m, 2H, phenylene-
CH), 6.93 (s, 1H, pyrrole-H), 6.51 (s, 1H, CH), 6.45 (s, 1H, CH),
2.82–2.78 (m, 8H, CH2CH3), 2.64–2.63 (m, 4H CH2CH3), 2.46
(m, 2H, CH2CH3), 2.42–2.41 (m, 2H, CH2CH3), 1.32 (m, 6H,
CH2CH3), 1.26 (m, 6H, CH2CH3), 1.20–1.17 (m, 9H, CH2CH3),
1.09 (t, J = 7.8 Hz, 3H, CH2CH3). MALDI-TOF-MS: m/z (%
intensity): 922.29 (44), 923.31 (100), 924.30 (62). HRMS (ESI-
TOF): m/z (% intensity): 923.3019. Calcd for C44H50B2F4IN4O4
([M − H]−): 923.3019.
1 Supramolecular Chemistry of Anions, ed. A. Bianchi, K. Bowman-James
and E. Garc´ıa-Espan˜a, Wiley-VCH, New York, 1997; Fundamentals
and Applications of Anion Separations, ed. R. P. Singh and B. A. Moyer,
Kluwer Academic/Plenum Publishers, New York, 2004; Anion Sensing,
ed. I. Stibor, Topics in Current Chemistry, Springer-Verlag, Berlin, 2005,
vol. 255, p. 238; J. L. Sessler, P. A. Gale and W.-S. Cho, Anion Receptor
Chemistry, RSC, Cambridge, 2006.
2 F. P. Schmidtchen and M. Berger, Chem. Rev., 1997, 97, 1609; P. D. Beer
and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 487; R. Mart´ınez-
Ma˜nez and F. Sanceno´n, Chem. Rev., 2003, 103, 4419; P. A. Gale and
R. Quesada, Coord. Chem. Rev., 2006, 250, 3219.
3 H. Maeda, Eur. J. Org. Chem., 2007, 5313.
4 H. Maeda and Y. Kusunose, Chem. Eur. J., 2005, 11, 5661; C. Fujimoto,
Y. Kusunose and H. Maeda, J. Org. Chem., 2006, 71, 2389; H. Maeda
and Y. Ito, Inorg. Chem., 2006, 45, 8205; H. Maeda, M. Terasaki, Y.
Haketa, Y. Mihashi and Y. Kusunose, Org. Biomol. Chem., 2008, 6,
433.
5 H. Maeda, Y. Kusunose, Y. Mihashi and T. Mizoguchi, J. Org. Chem.,
2007, 72, 2612.
6 H. Maeda, Y. Haketa and T. Nakanishi, J. Am. Chem. Soc., 2007, 129,
13661.
7 B. Oddo and C. Dainotti, Gazz. Chim. Ital., 1912, 42, 716.
8 W. M. Stark, M. G. Baker, F. J. Leeper, P. R. Raithby and A. R.
Battersby, J. Chem. Soc., Perkin Trans. 1, 1988, 1187.
9 H. Maeda, Y. Kusunose, M. Terasaki, Y. Ito, C. Fujimoto, R. Fujii and
T. Nakanishi, Chem. Asian J., 2007, 2, 350.
Method for X-ray analysis
10 Y. Murata, H. Kinoshita and K. Inomata, Bull. Chem. Soc. Jpn., 1996,
69, 3339.
A single crystal of 2a–I2 was obtained by vapor diffusion of hexane
into a CH2Cl2 solution. The data crystal was a reddish purple prism
of approximate dimensions 0.50 mm × 0.30 mm × 0.20 mm. A
single crystal of 2b was obtained by vapor diffusion of hexane
into a CH2ClCH2Cl solution. The data crystal was a red prism of
approximate dimensions 0.50 mm × 0.30 mm × 0.20 mm. In each
case, data were collected at 123 K on a Rigaku RAXIS-RAPID
diffractometer with graphite monochromated Mo-Ka radiation
11 Metal-Catalyzed Cross-Coupling Reactions, ed. A. de Meijere and
F. Diederich, Wiley-VCH, New York, 2004, vol. 1.
12 For b-unsubstituted pyrrole: L. W. Knight, J. W. Huffman and M. L.
Isherwood, Synlett, 2003, 1993.
13 For b-diethyl pyrrole: H. Uno, S. Ito, M. Wada, H. Watanabe, M.
Nagai, A. Hayashi, T. Murashima and N. Ono, J. Chem. Soc., Perkin
Trans. 1, 2000, 4347; J.-i. Setsune, M. Toda, K. Watanabe, P. K. Pamda
and T. Yoshida, Tetrahedron Lett., 2006, 47, 7541.
14 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson,
W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision C.01), Gaussian, Inc., Wallingford, CT, 2004.
˚
(k = 0.71075 A), and the structure was solved by direct method.
The non-hydrogen atoms were refined anisotropically. The calcula-
tions were performed using the Crystal Structure crystallographic
software package of Molecular Structure Corporation. CIF files
(CCDC 680227, 680228) are available online as ESI.†
DFT Calculation
Ab initio calculations of 2b and 2c were carried out using Gaussian
0314 and an HP Compaq dc5100 SFF computer. The structures
were optimized, and the total electronic energies were calculated
at the B3LYP level using a 6-31G** basis set.
15 T. Nishinaga, A. Tanatani, K. Oh and J. S. Moore, J. Am. Chem.
Soc., 2002, 124, 5934; H. Abe, N. Masuda, M. Waki and M. Inouye,
J. Am. Chem. Soc., 2005, 127, 16189; A. Rose, Z. Shu, C. F. Madigan,
T. M. Swager and V. Bulovic´, Nature, 2005, 434, 876; H. Onouchi, T.
Miyagawa, K. Morino and E. Yashima, Angew. Chem., Int. Ed., 2006,
45, 2381.
Acknowledgements
This work was supported by Grant-in-Aid for Young Scientists (B)
(No. 17750137) and Scientific Research in a Priority Area “Super-
Hierarchical Structures” (No. 18039038, 19022036) from the
16 F. Han, M. Higuchi and D. Kurth, Org. Lett., 2007, 9, 559.
This journal is
The Royal Society of Chemistry 2008
Org. Biomol. Chem., 2008, 6, 3091–3095 | 3095
©