M. García Basallote, J. Hodacˇová, E. García-España et al.
FULL PAPER
Kinetic Measurements: The decomposition kinetics of the CuII
complexes with the m-B232, p-B232 and 232 ligands were studied
at 298.1 K using an Applied Photophysics SX17MV stopped-flow
spectrophotometer with a PDA.1 diode-array detector. Solutions
of the metal complexes for the kinetic studies were prepared with
a ligand concentration of 1.0ϫ10–3 moldm–3, and the CuII/L ratio
(1:1 or 2:1) and the pH of the starting solutions were selected from
the species distribution curves so that the concentration of one of
the complex species was at a maximum while that of the other ones
was maintained at a minimum. For this reason, in general only
those species which represent at least 80% of the total complex
under some conditions were studied. The solutions of the starting
complexes were mixed in the stopped-flow instrument with solu-
tions containing an excess of acid under pseudo first-order condi-
tions, which required in some cases dilution of the stock complex
solution. The same procedure was used to study the kinetics of
decomposition of the Cu(o-B232)2+ complex, although this reac-
tion occurs more slowly and was studied using a conventional Cary
50-Bio UV/Vis spectrophotometer. The kinetic experiments were
carried out with the ionic strength adjusted to 0.15 moldm–3 with
NaClO4 (o-B232 and m-B232) or NaCl (p-B232). For the case of
the linear 232 ligand, the kinetic experiments were repeated using
different supporting electrolytes (NaClO4, NaCl and KNO3) with-
out significant differences between them.
1457–1464; f) A. Bianchi, K. Bowman-James, E. Garcia-Es-
paña Supramolecular Chemistry of Anions, Wiley-VCH, New
York, 1997; g) P. D. Beer, Acc. Chem. Res. 1998, 31, 71–80; h)
P. D. Beer, P. A. Gale, Angew. Chem. Int. Ed. 2001, 40, 486–
516; i) P. A. Gale, Coord. Chem. Rev. 2001, 213, 79–128; j) A.
Bencini, A. Bianchi, E. García-España, M. Micheloni, J. A.
Ramírez, Coord. Chem. Rev. 1999, 188, 97–156.
G. Schwarzenbach, Helv. Chim. Acta 1952, 35, 2344–2359.
R. Barbucci, L. Fabbrizzi, P. Paoletti, Coord. Chem. Rev. 1972,
8, 31–37.
D. C. Weatherburn, E. J. Billo, J. P. Jones, D. W. Margerum, In-
org. Chem. 1970, 9, 1557–1559.
P. Paoletti, L. Fabbrizzi, R. Barbucci, Inorg. Chem. 1973, 12,
1861–1864.
[3]
[4]
[5]
[6]
[7]
[8]
T. G. Fawcett, S. M. Rudich, B. H. Toby, R. A. Lalancette, J. A.
Potenza, H. J. Schugar, Inorg. Chem. 1980, 19, 940–945.
G. Marongiu, E. C. Lingafelter, P. Paoletti, Inorg. Chem. 1969,
8, 2763–2767.
[9]
[10]
J. M. Walshe, Proc. R. Soc. Med. 1977, 70, 1–3.
a) H. Harders, E. Cohnen, Proc. R. Soc. Med. 1977, 70, 10–
12; b) J. F. Pilichowski, M. Borel, G. Meyniel, Eur. J. Med.
Chem. 1984, 19, 425–431; c) B. Sarkar, Chem. Rev. 1999, 99,
2535–2544.
T. R. Borthwick, G. D. Benson, H. J. Schugar, Proc. Soc. Exp.
Biol. Med. 1979, 162, 227–228.
X. Sun, J. Kim, A. E. Martell, M. J. Welch, C. J. Anderson,
Nucl. Med. Biol. 2004, 31, 1051–1059.
a) F. Diederich, Angew. Chem. Int. Ed. Engl. 1988, 27, 362–
386; b) F. Vogtle, P. R. Jones, Cyclophane Chemistry: Synthesis
Structures and Reactions, John Wiley & Sons, New York, 1993;
c) R. Gleiter, H. Hopf (Eds.), Modern Cyclophane Chemistry,
Wiley-VCH, Weinheim, 2004.
a) C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, E. Garcia-
España, C. Giorgi, J. M. Llinares, J. A. Ramirez, B. Valtancoli,
Inorg. Chem. 1999, 38, 620–621; b) E. Garcia-España, P. Ga-
viña, J. Latorre, C. Soriano, B. Verdejo, J. Am. Chem. Soc.
2004, 126, 5082–5083; c) B. Verdejo, J. Aguilar, A. Domenech,
C. Miranda, P. Navarro, R. Jimenez Hermas, C. Soriano, E.
Garcia-España, Chem. Commun. 2005, 3086–3088.
a) M. G. Basallote, A. Domenech, A. Ferrer, E. Garcia-Es-
paña, J. M. Llinares, M. A. Manez, C. Soriano, B. Verdejo, In-
org. Chim. Acta 2006, 359, 2004–2014; b) J. Aguilar, M. G. Bas-
allote, L. Gil, J. C. Hernandez, M. A. Máñez, E. Garcia-Es-
paña, C. Soriano, B. Verdejo, Dalton Trans. 2004, 94–103.
a) M. Yoshida, M. Muneynki, T. Hisabori, Nat. Rev. Mol. Cell
Biol. 2001, 2, 669; b) P. D. Boyer, Nature 1999, 402, 247–249;
c) D. Stock, A. G. W. Leslie, J. E. Walker, Science 1999, 286,
1700–1705; d) K. Namba, F. Vonderviszt, Q. Rev. Biophys.
1997, 30, 1–65; e) M. Meister, S. R. Caplan, H. C. Berg, Bio-
phys. J. 1989, 55, 905–914.
A. Andrés, C. Bazzicalupi, A. Bianchi, E. García-España, S. V.
Luis, J. F. Miravet, J. A. Ramírez, J. Chem. Soc. Dalton Trans.
1994, 2995–3004.
a) M. Chadim, P. Díaz, E. García-España, J. Hodacova, P. C.
Junk, J. Latorre, J. M. Llinares, C. Soriano, J. Zavada, New J.
Chem. 2003, 27, 1132–1139; b) M. Chadim, M. Budesinsky, J.
Hodacova, J. Zavada, Collect. Czech. Chem. Commun. 2000,
65, 99–105.
[11]
[12]
[13]
The reaction kinetics was monitored either by recording the com-
plete spectral changes with time (experiments with the conventional
spectrophotometer and some stopped-flow experiments using the
diode-array detector) or by measuring the absorbance changes at
the wavelength of maximum absorption for each complex. In the
first case the data were analyzed with the SPECFIT/32 program,[35]
whereas for single wavelength measurements the standard software
for the stopped-flow instrument was used. Consistent results were
obtained using both fitting procedures. The reported estimation of
the errors corresponds in all cases to the standard deviation in the
fit of the data showing the changes of the observed rate constants
with the proton concentration.
[14]
[15]
[16]
Supporting Information (see also the footnote on the first page of
this article): Species distribution curves for the different protonated
forms of the ligands and for their corresponding CuII complexes.
Acknowledgments
Financial support from the Spanish Dirección General de In-
vestigación Científica y Técnica (DGICYT), research projects
CTQ2006-15672-CO5-01 and CTQ2006-14909-CO2-01), Genera-
litat Valenciana (GV06/258) and Junta de Andalucía (FQM-137)
is gratefully acknowledged. A. F. acknowledges a grant from the
Programa de Doctorado Conjunto entre la Universidad de Cádiz
y las Universidades Cubanas (Spain). J. M. Ll. thanks the Spanish
Ministerio de Ciencia y Tecnología (MCYT) for a Ramón y Cajal
contract.
[17]
[18]
[19]
[20]
[21]
[22]
C. Nave, M. Truter, J. Chem. Soc. Dalton Trans. 1974, 2351–
2354.
[1] a) A. Bianchi, M. Micheloni, P. Paoletti, Coord. Chem. Rev.
1991, 110, 17–113; b) M. Izatt, K. Pawlak, J. S. Bradshaw, R. L.
Bruening, Chem. Rev. 1995, 95, 2529–2586; c) E. García-Es-
paña, P. Díaz, J. M. Llinares, Coord. Chem. Rev. 2006, 250,
2952–2986.
[2] a) J.-M. Lehn, Angew. Chem. Int. Ed. Engl. 1988, 27, 89–112;
b) J.-M. Lehn, Supramolecular Chemistry. Concepts and Per-
spective, VCH, Weinheim, Germany, 1995; c) F. P.
Schmidtchen, Top. Curr. Chem. 1986, 132, 101–133; d) M. E.
Huston, E. U. Akkaya, A. W. Czarnik, J. Am. Chem. Soc. 1989,
111, 8735–8737; e) B. Dietrich, Pure Appl. Chem. 1993, 65,
M. Studer, A. Riesen, T. A. Kaden, Helv. Chim. Acta 1989, 72,
1253–1258.
J. E. Sarnesky, H. L. Surprenant, F. K. Molen, C. N. Reiley,
Anal. Chem. 1975, 47, 2116–2124.
a) R. Menif, A. E. Martell, P. J. Squattrito, A. E. Clearfield,
Inorg. Chem. 1990, 29, 4723–4729; b) M. G. Basallote, J.
Durán, M. J. Fernández-Trujillo, M. A. Máñez, B. Szpoganicz,
J. Chem. Soc. Dalton Trans. 1999, 1093–1100; c) M. Kodama,
Bull. Chem. Soc. Jpn. 1997, 70, 1361–1367; d) M. Kodama, E.
Kimura, J. Chem. Soc. Dalton Trans. 1978, 1081–1085.
1506
www.eurjic.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2008, 1497–1507