10.1002/anie.201901228
Angewandte Chemie International Edition
COMMUNICATION
[3]
[4]
[5]
[6]
Y. Tsuji, R. Movassagh, S. Datta, R. Hoffmann, ACS Nano 2015, 9,
11109−11120;
electrode atoms differ, producing an energy offset between the
molecule and the electrodes.
M. H. Garner, W. Bro-Jørgensen, P. D. Pedersen, G. C. Solomon, J.
Phys. Chem. C 2018, 122, 26777−26789.
In conclusion, this study reveals that the conductance of a
series of cumulenes shows remarkably little dependence on the
molecular length (n). This behavior is a consequence of the lack
of strong BLA in these compounds, which results in a steep
reduction in the HOMO-LUMO gap with increasing length.[6,7] In
contrast, polyynes show strong BLA resulting in an exponential
attenuation of conductance with length (β ≈ 0.2–0.3 Å–1 at low
bias voltage).[28] The [5]cumulene exhibits a high conductance of
log(G/G0) = −3.7 (± 0.5) and shows stable junctions up to a bias
of 1.2 V. The discovery that cumulenes exhibit length-
independent conductance suggests that they might be used to
construct longer highly-conductive molecular wires, however,
this would require the development of effective strategies for
controlling the reactivity of long cumulenes.[7,29]
a) P. Cadiot, W. Chodkiewicz, J. Rauss-Godineau, J. Bull. Soc. Chim.
Fr. 1961, 2176–2193; b) R. Hoffmann, Tetrahedron 1966, 22, 521–538.
a) D. Wendinger, R. R. Tykwinski, Acc. Chem. Res. 2017, 50, 1468-
1479; b) J. A. Januszewski, R. R. Tykwinski, Chem. Soc. Rev. 2014, 43,
3184−3203; b) R. R. Tykwinski, Chem. Rec. 2015, 15, 1060−1074.
a) J. A. Januszewski, D. Wendinger, C. D. Methfessel, F. Hampel, R. R.
Tykwinski, Angew. Chem. Int. Ed. 2013, 52, 1817−1821; Angew. Chem.
2013, 125, 1862–1867; b) P. Gawel, Y.-L. Wu, A. D. Finke, N. Trapp,
Michal Zalibera, C. Boudon, J.-P. Gisselbrecht, W. B. Schweizer, G.
Gescheidt, F. Diederich, Chem. Eur. J. 2015, 21, 6215–6225.
S. Gunasekaran, D. Hernangómez-Pérez, I. Davydenko, S. Marder, F.
Evers, L. Venkataraman, Nano. Lett. 2018, 18, 6387−6391.
J. Prasongkit, A. Grigoriev, G. Wendin, R. Ahuja, Phys. Rev. B 2010,
81, 115404.
[7]
[8]
[9]
[10] M. Weimer, W. Hieringer, F. D. Sala, A. Görling, Chem. Phys. 2005,
309, 77−87.
Notes
[11] M. Tommasini, A. Milani, D. Fazzi, A. Lucotti, C. Castiglioni, J. A.
Januszewski, D. Wendinger, R. R. Tykwinski, J. Phys. Chem. C 2014,
118, 26415−26425.
All individual G−z traces for the STM experiments are freely
available
at
the
following
repository
address:
[12] a) W. A. Chalifoux, R. R. Tykwinski, C. R. Chimie 2009, 12, 341–358;
b) W. A. Chalifoux, R. R. Tykwinski, Nat. Chem. 2010, 2, 967−971.
[13] L. Sun, Y. A. Diaz-Fernandez, T. A. Gschneidtner, F. Westerlund, S.
Lara-Avila, K. Moth-Poulsen, Chem. Soc. Rev. 2014, 43, 7378−7411.
[14] a) X. Fang, Y.-M. Zhang, K. Chang, Z. Liu, X. Su, H. Chen, S. X.-A.
Zhang, Y. Liu, C. Wu, Chem. Mater. 2016, 28, 6628–6636; b) P. Gawel,
C. Dengiz, A. D. Finke, N. Trapp, C. Boudon, J.-P. Gisselbrecht, F.
Diederich, Angew. Chem. Int. Ed. 2014, 53, 4341–4345; Angew. Chem.
2014, 126, 4430–4434; c) L.-M. Wei, L.-L. Wei, W.-B. Pan, M.-J. Wu,
Synlett. 2005, 2219–2223.
Acknowledgements
We thank the EPSRC (grants EP/M016110/1, EP/M014452/1,
EP/M014169/1 and EP/M029522/1) and ERC (grant 320969) for
support, and the EPSRC UK National Mass Spectrometry
Facility at Swansea University for MALDI spectra. H.S. and S.S.
acknowledge the Leverhulme Trust for Leverhulme Early Career
Fellowship no. ECF-2017-186 and ECF-2018-375. H.S.
acknowledges the UKRI Future Leaders Fellowship no.
MR/S015329/1. IMDEA Nanociencia acknowledges support
from the ’Severo Ochoa’ Programme for Centres of Excellence
in R&D (MINECO, Grant SEV-2016-0686). N.A. and C.J.L.
acknowledge EC H2020 FET Open project 767187 “QuIET”. N.A.
and G.R.B. were funded by Spanish MINECO (grants MAT2014-
57915-R, MAT2017-88693-R and MDM-2014-0377) and
[15] Low temperature single crystal X-ray diffraction data for compound 1
were collected using
a (Rigaku) Oxford Diffraction SuperNova
diffractometer. Raw frame data were reduced using CrysAlisPro and
the structures were solved using 'Superflip’ [L. Palatinus, G. Chapuis, J.
Appl. Cryst. 2007, 40, 786–790] before refinement with CRYSTALS [a)
P. Parois, R. I. Cooper, A. L. Thompson, Chem. Cent. J. 2015, 9:30; b)
R. I. Cooper, A. L. Thompson, D. J. Watkin, J. Appl. Cryst. 2010, 43,
1100–1107] as per the SI (CIF). Crystallographic data have been
deposited with the Cambridge Crystallographic Data Centre as
supplementary publication no. CCDC 1893619 and can be obtained via
Comunidad
de
Madrid
(grant
NANOFRONTMAG-CM,
[16] M. U. Bühringer, K. Padberg, M. D. Phleps, H. Maid, C. Placht, C.
Neiss, M. J. Ferguson, A. Görling, R. R. Tykwinski, Angew. Chem. Int.
Ed. 2018, 57, 8321−8325; Angew. Chem. 2018, 130, 8454–8458.
[17] E. Leary, C. Roche, H.-W. Jiang, I. Grace, M. T. González, G. Rubio-
Bollinger, C. Romero-Muñiz, Y. Xiong, Q. Al-Galiby, M. Noori, M. A.
Lebedeva, K. Porfyrakis, N. Agrait, A. Hodgson, S. J. Higgins, C. J.
Lambert, H. L. Anderson, R. J. Nichols, J. Am. Chem. Soc. 2018, 140,
710−718.
S2013/MIT-2850). We thank Dr. P. Gawel for valuable
discussion.
Keywords: cumulene • single-molecule • conductance •
molecular wire • break-junction
[1]
[2]
Nitzan, Annu. Rev. Phys. Chem. 2001, 52, 681−750.
[18] M. T. González, X. Zhao, D. Z. Manrique, D. Miguel, E. Leary, M.
Gulcur, A. S. Batsanov, G. Rubio-Bollinger, C. J. Lambert, M. R. Bryce,
N. Nicolás, J. Phys. Chem. C 2014, 118, 21655−21662.
a) J. He, F. Chen, J. Li, O. F. Sankey, Y. Terazono, C. Herrero, D. Gust,
T. A. Moore, A. L. Moore, S. M. Lindsay, J. Am. Chem. Soc. 2005, 127,
1384−1385; b) I. Visoly-Fisher, K. Daie, Y. Terazono, C. Herrero, F.
Fungo, L. Otero, E. Durantini, J. J. Silber, L. Sereno, D. Gust, T. A.
Moore, A. L. Moore, S. M. Lindsay, Proc. Natl. Acad. Sci. 2006, 103,
8686−8690; c) W. Chen, J. R. Widawsky, H. Vázquez, S. T. Schneebeli,
M. S. Hybertsen, R. Breslow, L. Venkataraman, J. Am. Chem. Soc.
2011, 133, 17160–17163; d) E. Leary, B. Limburg, A. Alanazy, S.
Sangtarash, I. Grace, K. Swada, L. J. Esdaile, M. Noori, M. T.
[19] J. M. Soler, E. Artacho, J. D. Gale, A. Garcìa, J. Junquera, P. Ordejòn,
D. Sànchez-Portal, J. Phys. Condens. Matter 2002, 14, 2745–2779.
[20] J. Ferrer, C. J. Lambert, V. M. García-Suárez, D. Zs Manrique, D.
Visontai, L. Oroszlany, R. Rodríguez-Ferradás, I. Grace, S. W. D.
Bailey, K. Gillemot, H. Sadeghi, L. A. Algharagholy, New J. Phys. 2014,
16, 093029.
[21] Z. Berkovitch-Yellin, L. Leiserowitz, Acta Cryst. 1977, 33, 3657–3669.
[22] The discrepancy between the Eg(UV) and Eg(DFT) in Table 1 is normal
for calculated Kohn-Sham DFT HOMO-LUMO gaps; see E. J.
Baerends, O. V. Gritsenkoab, R. van Meer, Phys. Chem. Chem. Phys.
González, G. Rubio-Bollinger, H. Sadeghi, A. Hodgson, N. Agraıt, S. J.
̈
Higgins, C. J. Lambert, H. L. Anderson, R. J. Nichols, J. Am. Chem.
Soc. 2018, 140, 12877−12883.
4
This article is protected by copyright. All rights reserved.