C O M M U N I C A T I O N S
Table 1. Preliminary Scope of the Transfer Hydrogenation
case of ꢀ-nitroesters with ester groups other than benzyl, conversion
into the corresponding ꢀ2-amino acids is equally facile and involves
a hydrogenation-hydrolysis sequence as outlined in the SI. Our
organocatalytic asymmetric nitroolefin reduction complements a
recently developed biocatalytic version12 but has a significantly
broader scope. The modest atom economy of our procedure may
be counterbalanced by the practical and convenient use of bench
stable, crystalline Hantzsch esters and a readily available catalyst.
For practical considerations, it is important to note that both the
Hantzsch ester oxidation product and the catalyst are easily
separable from the less polar reaction products by flash chroma-
tography and our reaction tolerates air, moisture, and up-scaling.
Acknowledgment. We thank the DFG (Priority Program
Organocatalysis SPP1179) for funding this work. Generous support
by the Max-Planck-Society, by Novartis (Young Investigator Award
to BL), and by the Fond der Chemischen Industrie is gratefully
acknowledged. We also thank Jutta Rosentreter for several GC
measurements and Dr. Jung Woon Yang for technical assistance.
Supporting Information Available: Experimental procedures,
compound characterization, NMR spectra, and HPLC and GC traces.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015–2022.
(2) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. ReV. 2001, 101,
3219–3232.
(3) (a) EnantioselectiVe Synthesis of ꢀ-Amino Acids, 2nd ed.; Juaristi, E.,
Soloshonak, V., Eds.; Wiley-VCH: New York, 2005. (b) Liu, M.; Sibi,
M. P. Tetrahedron 2002, 58, 7991–8035.
(4) For a review on the chemistry of ꢀ2-amino acids, see: Lelais, G.; Seebach,
D. Biopolymers (Peptide Sci.) 2004, 76, 206–243.
(5) (a) Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804–6805. (b)
Chi, Y.; English, E. P.; Pomerantz, W. C.; Horne, W. S.; Joyce, L. A.;
Alexander, L. R.; Fleming, W. S.; Hopkins, E. A.; Gellman, S. H. J. Am.
Chem. Soc. 2007, 129, 6050–6055.
(6) For the preparation of ꢀ-nitro-R-hydroxyesters, see: (a) Christensen, C.;
Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67, 4875–
4881. For the dehydration of ꢀ-nitro-R-hydroxyester, see: (b) Jayakanthan,
K.; Madhusudanan, K. P.; Vankar, Y. D. Tetrahedron 2004, 60, 397–403.
(7) Eilitz, U.; Lessmann, F.; Seidelmann, O.; Wendisch, V. Tetrahedron:
Asymmetry 2003, 14, 3095–3097.
(8) See for example: Groeger, H.; Werner, H.; Altenbuchner, J.; Menzel, A.;
Hummel, W. (Degussa AG, Germany) PCT Int. Appl. WO2005093081,
2005..
a Isomeric purity is >98:2. b Yields determined by GC (volatile
products).
(9) (a) Martin, N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 129,
8976–8977. For an independent nonenantioselective version, see: (b) Zhang,
Z.; Schreiner, P. R. Synthesis 2007, 2559–2564.
Scheme 1. Effect of Olefin Geometry on Enantioselectivitya
(10) For pioneering studies on the use of chiral thiourea catalysts, see: (a)
Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 5315–5316.
(b) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem., Int. Ed.
2000, 39, 1279–1281. For the activation of nitroolefins with bifunctional
thiourea catalysts, also see: (c) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am.
Chem. Soc. 2003, 125, 12672–12673.
(11) For reviews on hydrogen-bonding catalysis, see: (a) Taylor, M. S.; Jacobsen,
E. N. Angew. Chem., Int. Ed. 2006, 45, 1520–1543. (b) Doyle, A. G.;
Jacobsen, E. N. Chem. ReV. 2007, 107, 5713–5743. Also see: (c) Schreiner,
P. R. Chem. Soc. ReV. 2003, 32, 289–296. (d) Pihko, P. M. Angew. Chem.,
Int. Ed. 2004, 43, 2062–2064. (e) Oestreich, M. Nachr. Chem. 2004, 52,
35–38. (f) Bolm, C; Rantanen, T.; Schiffers, I.; Zani, L. Angew. Chem.,
Int. Ed. 2005, 44, 1758–1763. (g) Yamamoto, H.; Futatsugi, K. Angew.
Chem., Int. Ed. 2005, 44, 1924–1942. (h) Connon, S. J. Chem.sEur. J.
2006, 12, 5418–5427.
(12) Swiderska, M. A.; Stewart, J. D. Org. Lett. 2006, 8, 6131–6133.
(13) (a) Yang, J. W.; Hechavarria Fonseca, M. T.; List, B. Angew. Chem., Int.
Ed. 2004, 43, 6660–6662. (b) Yang, J. W.; Hechavarria Fonseca, M. T.;
Vignola, N.; List, B. Angew. Chem., Int. Ed. 2005, 44, 108–110. (c) Mayer,
S.; List, B. Angew. Chem., Int. Ed. 2006, 45, 4193–4195. Also see:(d)
Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005,
127, 32–33.
a Yields and er’s from GC. All yields are >89%.
JA8069852
9
J. AM. CHEM. SOC. VOL. 130, NO. 42, 2008 13863