LETTER
Total Synthesis of (+)- and (–)-Machaeriol A
1645
OH OH
OH
H
10a
H
9
OH
O
– H2O
EDDA, Et3N
O
H
11
12
1
O
H
Scheme 4 The mechanism for the formation and stereochemistry of (+)-machaeriol A (1)
which was then attacked by pinosylvin (9) to yield inter- expected to be widely used in the synthesis of other natu-
mediate 11.
ral products including cannabinoid analogues.
Such a process for producing aldol-type products by a
Ca(OH)2-mediated reaction of resorcinol to enals was al-
ready suggested by Shigemasa.19 The dehydration of
compound 11 in the presence of EDDA and Et3N af-
fords o-quinone methide 12. The stereospecificity of
product 1 might be explained by a pseudoequatorial con-
formation of o-quinone methide 12 for the coplanar struc-
ture adopted by the methyl group in the chairlike
transition state.20 In the process of the hetero-Diels–Alder
reaction of o-quinone methide 12, the exo transition state
must have been more energetically favorable than the
endo transition state. This is in good agreement with Mari-
no, who reported the synthesis of hexahydrocannabinol
using intramolecular hetero-Diels–Alder cycloaddition of
o-quinone methide.21
Acknowledgment
This work was supported by grant No. RTI04-01-04 from the Re-
gional Technology Innovation Program of the Ministry of Commer-
ce Industry and Energy (MOCIE).
References and Notes
(1) Gaoni, Y.; Mechoulam, R. J. Am. Chem. Soc. 1964, 86,
1646.
(2) (a) Porter, A. C.; Felder, C. C. Pharmacol. Ther. 2001, 90,
45. (b) Williamson, E. M.; Evans, F. J. Drugs 2000, 60,
1303. (c) Hollister, L. E. Pharmacol. Rev. 1986, 38, 1.
(3) Razdan, R. K. In The Total Synthesis of Natural Products,
Vol. 4; ApSimon, J., Ed.; Wiley: New York, 1981, 185.
(4) Martin, P.; Consroe, P. Science 1976, 194, 965.
(5) (a) Matsuda, L. A.; Lolait, S. J.; Brownstein, M. J.; Young,
A. C.; Bonner, T. I. Nature (London) 1990, 346, 561.
(b) Munro, S.; Thomas, K. L.; Abu-Shaar, M. Nature
(London) 1993, 365, 61.
Next, the synthesis of unnatural (–)-machaeriol A (5) was
attempted using pinosylvin (9), as shown in Scheme 5.
(6) (a) Mendizabal, V. E.; Adler-Graschinsky, E. British J.
Pharmacol. 2007, 151, 427. (b) Ashton, C. H.; Moore, P. B.;
Gallagher, P.; Young, A. H. J. Psychopharmacol. 2005, 19,
293.
(7) (a) Muhammad, I.; Li, X.-C.; Jacob, M. R.; Tekwani, B. L.;
Dunbar, D. C.; Ferreira, D. J. Nat. Prod. 2003, 66, 804.
(b) Muhammad, I.; Li, X.-C.; Dunbar, D. C.; ElSohly, M. A.;
Khan, I. A. J. Nat. Prod. 2001, 64, 1322.
(8) Chittiboyina, A. G.; Reddy, C. R.; Watkins, E. B.; Avery, M.
A. Tetrahedron Lett. 2004, 45, 1689.
(9) Huang, Q.; Wang, Q.; Zheng, J.; Zhang, J.; Pan, X.; She, X.
Tetrahedron 2007, 63, 1014.
OHC
OH
OH
H
10b
OH
H
9
EDDA, Et3N
xylene
O
5
reflux
76%
Scheme 5 Synthesis of unnatural (–)-machaeriol A (5)
(10) Wang, Q.; Huang, Q.; Chen, B.; Lu, J.; Wang, H.; She, X.;
Pan, X. Angew. Chem. Int. Ed. 2006, 45, 3651.
(11) Lee, Y. R.; Choi, J. H.; Yoon, S. H. Tetrahedron Lett. 2005,
46, 7539.
(12) (a) Lee, Y. R.; Kim, J. H. Synlett 2007, 2232. (b) Lee, Y.
R.; Lee, W. K.; Noh, S. K.; Lyoo, W. S. Synthesis 2006,
853. (c) Lee, Y. R.; Kim, D. H. Synthesis 2006, 603.
(13) (a) Wang, X.; Lee, Y. R. Tetrahedron Lett. 2007, 48, 6275.
(b) Wang, X.; Lee, Y. R. Synthesis 2007, 3044. (c) Lee, Y.
R.; Xia, L. Synthesis 2007, 3240.
(14) Wang, M.; Jin, Y.; Ho, C.-T. J. Agric. Food Chem. 1999, 47,
3974.
(15) (a) Gehlert, R.; Schoeppner, A.; Kindl, H. Mol. Plant
Microbe Interact. 1990, 3, 444. (b) Bois, E.; Lieutier, F.;
Yart, A. Eur J. Plant Pathol. 1999, 105, 51.
Treatment of compound 9 with (R)-(+)-citronellal (10b,
[a]D +12.5, neat) in the presence of ethylenediamine diac-
etate (20 mol%) and triethylamine (2 mL) in refluxing xy-
lene for 24 hours gave (–)-machaeriol A (5) in 76% yield.
The specific rotation value of synthetic compound 5 was
[a]D –99.8 (c 0.30, MeOH).
In conclusion, a new and concise synthetic route for bio-
logically interesting natural (+)-machaeriol A (1) and its
enantiomer (–)-machaeriol A (5) was developed starting
from 3,5-dimethoxybenzaldehyde (6) and diethyl ben-
zylphosphonate (7). The key strategies involved stilbene
formation through a Horner–Wadsworth–Emmons reac-
tion and trans-hexahydrodibenzopyran formation through
hetero-Diels–Alder cycloaddition. This synthetic route is
(16) (a) Fang, J.; Lu, M.; Chen, J.; Zhu, H.; Li, Y.; Yang, L.; Wu,
L.; Liu, Z. Chemistry 2002, 8, 4191. (b) Ohguchi, K.;
Tanaka, T.; Kido, T.; Baba, K.; Iinuma, M.; Matsumoto, K.;
Synlett 2008, No. 11, 1643–1646 © Thieme Stuttgart · New York