5708
Organometallics 2008, 27, 5708–5711
Preparation and Characterization of a Switchable Single-Component
Chromium Trimerization Catalyst
Khalid Albahily,† Danya Al-Baldawi,† Sandro Gambarotta,*,† Robbert Duchateau,*,‡
Ece Koc¸,‡ and Tara J. Burchell†
Department of Chemistry, UniVersity of Ottawa, Ottawa, Ontario K1N 6N5, Canada, and Department of
Chemistry, EindhoVen UniVersity of Technology, P.O. Box 513, EindhoVen 56000MB, The Netherlands
ReceiVed June 17, 2008
Reaction of [(Ar)NPN(t-Bu)]2Cr (2) with Me3Al afforded {[(Ar)NP(Me)N(t-Bu)]AlMe2}Cr{[(Ar)NP(Me)-
(AlMe3)N(t-Bu)]AlMe(µ-Me)} (3), in which the ligand’s P atom has been alkylated and one AlR2 residue
retained by the chelating framework. One of the two ligands also retained an additional Me3Al unit via
coordination to the alkylated P atom. Complex 3 provides the first case of a selective ethylene trimerization
catalyst with high activity and excellent selectivity, producing 1-hexene upon exposure to ethylene at 80
°C. Furthermore, upon treatment with MAO, complex 3 acts as a nonselective catalyst, producing a
statistical mixture of oligomers with the highest ever observed activity. In addition, upon treatment with
[(i-Bu)2Al]2O, the complex acts as a highly active polymerization catalyst.
function of the alane activator is to reduce the metal toward a
lower oxidation state.7 Recent mechanistic work8 on the most
selective and active catalytic systems has revealed a rather
dynamic and somewhat contradictory behavior from the metal
oxidation state point of view, which, as a matter of fact, has
not yet been conclusively identified. The situation is further
complicated by the fact that some of the chromium catalysts
display extremely high activity but produce instead a statistical
distribution of oligomers.9 Therefore, questions arise as to which
mechanism the frequently observed formation of a Schultz-Flory
distribution of oligomers may belong to: namely, the nonredox
polymerization-type mechanism or the redox trimerization-type
Introduction
Catalytic selective ethylene trimerization and tetramerization
are fascinating processes increasingly attracting interest from
both industrial and academic standpoints.1 The mechanism
through which the selective trimerization2 is accomplished is
conceptually different from that of a regular polymerization.3
The ring-expansion mechanism, commonly accepted by workers
in the field,2g,h implies in fact a redox process, during which
oxidative addition of the metal center to the ethylene double
bond is followed by two subsequent insertions. The reductive
elimination of the seven-membered ring, generated during
the insertions, affords 1-hexene and restores the metal coordi-
native vacancy as well as the original low-valent configuration.
In this event, the availability of d electrons seems to be a
requirement for this catalytic cycle.
The most selective and active ethylene oligomerization
catalysts remain those based on chromium,4-6 where trivalent
complexes are by far the most frequently reported catalyst
precursors.1b This is despite its trivalent state being well known
as rather inert and certainly not inclined toward oxidative
addition. For this reason, it is also believed that a primary
(4) (a) Mimura, H.; Aoyama, T.; Yamamoto, T.; Oguri, M.; Koie, Y.
(Tosoh Corporation) JP 09268133, 1997. (b) Grove, J. J. C.; Mohamed,
H. A.; Griesel, L. (Sasol Technology (Pty) Ltd) WO 03/004158, 2002. (c)
Yoshida, T.; Yamamoto, T.; Okada, H.; Murakita, H. (Tosoh Corporation)
US2002/0035029, 2002. (d) Wass, D. F. (BP Chemicals Ltd) WO 02/04119,
2002. (e) Dixon, J. T.; Wasserscheid, P.; McGuinness, D. S.; Hess, F. M.;
Maumela, H.; Morgan, D. H.; Bollmann, A. (Sasol Technology (Pty) Ltd)
WO 03053890, 2001.
(5) (a) Mohamed, H.; Bollmann, A.; Dixon, J.; Gokul, V.; Griesel, L.;
Grove, C.; Hess, F.; Maumela, H.; Pepler, L. Appl. Catal., A 2003, 255,
355. (b) Carter, A.; Cohen, S. A.; Cooley, N. A.; Murphy, A.; Scutt, J.;
Wass, D. F. Chem. Commun. 2002, 858. (c) McGuinness, D. S.; Wasser-
scheid, P.; Keim, W.; Morgan, D. H.; Dixon, J. T.; Bollmann, A.; Maumela,
H.; Hess, F. M.; Englert, U. J. Am. Chem. Soc. 2003, 125, 5272. (d) Agapie,
T.; Day, M. W.; Henling, L. M.; Labinger, J. A.; Bercaw, J. E. Organo-
metallics 2006, 25, 2733. (e) Schofer, S. J.; Day, M. W.; Henling, L. M.;
Labinger, J. A.; Bercaw, J. E. Organometallics 2006, 25, 2743.
(6) (a) Reagan, W. K. (Phillips Petroleum Company) EP 0417477, 1991.
(b) Conroy, B. K.; Pettijohn, T. M.; Benham, E. A. (Phillips Petroleum
Co.) EP 0608447, 1994. (c) Freeman, J. W.; Buster, J. L.; Knudsen, R. D.
(Phillips Petroleum Co.) US 5,856,257, 1999.
(7) (a) Kreisel, K. A.; Yap, G. P. A.; Theopold, K. H. Inorg. Chem.
2008,ASAP. (b) McGuinness, D. S.; Brown, D. B.; Tooze, R. P.; Hess,
F. M.; Dixon, J. T.; Slawin, A. M. Z. Organometallics 2006, 25, 3605. (c)
Temple, C.; Jabri, A.; Crewdson, P.; Gambarotta, S.; Korobkov, I.;
Duchateau, R. Angew. Chem. 2006, 118, 7208. (d) Rucklidge, A, J.;
McGuinness, D. S.; Tooze, R. P.; Slawin, A. M. Z.; Pelletier, J. D. A.;
Hanton, M. J.; Webb, P. B. Organometallics 2007, 26, 2782. (e) Bowen,
L. E.; Haddow, M. F.; Orpen, A. G.; Wass, D. F. Dalton 2007, 1160.
(8) (a) Jabri, A.; Crewdson, P.; Gambarotta, S.; Korobkov, I.; Duchateau,
R. Organometallic 2006, 25, 715. (b) Jabri, A.; Temple, C.; Crewdson, P.;
Gambarotta, S.; Korobkov, I.; Duchateau, R. J. Am. Chem. Soc. 2006, 128,
9238.
* Corresponding authors. E-mail: sgambaro@uottawa.ca.
† University of Ottawa.
‡ Eindhoven University of Technology.
(1) (a) Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.;
Maumela, H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otto, S.;
Overett, M.; Slawin, A. M. Z.; Wasserscheid, P.; Kuhlmann, S. J. Am. Chem.
Soc. 2004, 126, 14712. (b) Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan,
D. H. J. Organomet. Chem. 2004, 689, 3641. (c) Andes, C.; Harkins, S. B.;
Murtuza, S.; Oyler, K.; Sen, A. J. Am. Chem. Soc. 2001, 123, 7423–7424.
(d) Santi, R.; Romano, A. M.; Grande, M.; Sommazzi, A.; Masi, F. Proto,
A. (ENICHEM S.P.A.) P.C.T patent WO01/68572/A1, 2001.
(2) (a) McDermott, J. X.; White, J. F.; Whitesides, G. M. J. Am. Chem.
Soc. 1973, 95, 4451. (b) McDermott, X.; White, J. F.; Whitesides, G. M.
J. Am. Chem. Soc. 1976, 98, 6521. (c) Manyik, R. M.; Walker, W. E.;
Wilson, T. P. J. Catal. 1977, 47, 197. (d) McDaniel, M. P. AdV. Catal.
1985, 33, 47. (e) Briggs, J. R. Chem. Commun. 1989, 11, 674. (f) Meijboom,
N.; Schaverien, C. J.; Orpen, A. G. Organometallics 1990, 9, 774. (g)
Emrich, R.; Heinemann, O.; Jolly, P. W.; Kru¨ger, Verhovnik, G. P. J.
Organometallics 1997, 16, 544. (h) Agapie, T.; Labinger, J. A.; Bercaw,
J. E. J. Am. Chem. Soc. 2007, 129, 14281.
(3) (a) Cossee, P. J. Catal. 1964, 3, 80. (b) Arlman, E. J.; Cossee, P. J.
Catal. 1964, 3, 99. (c) Skupinska, J. Chem. ReV. 1991, 91, 613.
(9) (a) Crewdson, P.; Gambarotta, S.; Djoman, M.-C.; Korobkov, I.;
Duchateau, R. Organometallics 2005, 24, 5214.
10.1021/om800563w CCC: $40.75
2008 American Chemical Society
Publication on Web 09/25/2008