S. H. Kim et al. / Tetrahedron Letters 49 (2008) 5863–5866
5865
2. For the Pd-mediated ortho-arylation of 2-arylpyridine and related compounds,
see: (a) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904–11905; (b)
Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047–14049;
(c) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006,
128, 4972–4973; (d) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am.
Chem. Soc. 2005, 127, 7330–7331.
Oxone
Ar-OH
7a
[Pd]
3. For the Pd-mediated ortho-halogenation of 2-arylpyridine and related
compounds, see: (a) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org.
Lett. 2006, 8, 2523–2526; (b) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem.
Soc. 2006, 128, 7134–7135; (c) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M.
S. Tetrahedron 2006, 62, 11483–11498.
O
Ar Pd OH
KO S O Pd OH
O
4. For the Pd-mediated ortho-acetoxylation of 2-arylpyridine and related
compounds, see: (a) Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149–4152;
(b) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300–2301;
(c) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141–1144; (d)
Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542–9543; (e)
Kalberer, E. W.; Whitfield, S. R.; Sanford, M. S. J. Mol. Catal. A 2006, 251,
108–113; (f) Wang, G.-W.; Yuan, T.-T.; Wu, X.-L. J. Org. Chem. 2008, 73, 4717–
4720.
ArH
3a
KHSO4
Scheme 2.
5. For other examples on the transition metal-catalyzed ortho-functionalization of
2-arylpyridine and related compounds, see: (a) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.;
Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2008, 130, 3304–3306; (b) Dyker, G.
Angew. Chem., Int. Ed. 1999, 38, 1698–1712; (c) Spencer, J.; Chowdhry, B. Z.;
Mallet, A. I.; Rathnam, R. P.; Adatia, T.; Bashall, A.; Rominger, F. Tetrahedron
2008, 64, 6082–6089; (d) Matsuura, Y.; Tamura, M.; Kochi, T.; Sato, M.; Chatani,
N.; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 9858–9859; (e) Imoto, S.; Uemura,
T.; Kakiuchi, F.; Chatani, N. Synlett 2007, 170–172; (f) Ozdemir, I.; Demir, S.;
Cetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.; Dixneuf, P. H. J. Am.
Chem. Soc. 2008, 130, 1156–1157; (g) Oi, S.; Sato, H.; Sugawara, S.; Inoue, Y. Org.
Lett. 2008, 10, 1823–1826; (h) Vogler, T.; Studer, A. Org. Lett. 2008, 10, 129–131;
(i) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128,
6790–6791.
of ketone compound 2 at the primary position of Baylis-Hillman
acetate 1 was carried out with the aid of K2CO3 in DMF in good yields
(72–86%). Next, pyridine synthesis with NH4OAc was also carried
out as reported in 73–88% yields.6 With these starting materials
we examined the selective ortho-hydroxylation under the opti-
mized conditions and the results are summarized in Table 2.
The corresponding 2-hydroxy derivatives were synthesized in
moderate to good yields in most cases (7a–d, 7i, 7j). Tricyclic com-
pound 7h was obtained in good yield (80%) when we used 3h (en-
try 8). This compound must be formed via the intramolecular
lactonization of the initially generated ortho-hydroxy intermedi-
ate. However, the reaction was completely failed with 2,5-di-
methyl and 2,4-dimethyl derivatives, 3e and 3f (entries 5 and 6).
We could not obtain any trace amounts of desired products (7e,
7f) in these cases even at elevated temperature. Whereas we
obtained low yield of product 7g (28%) from 3,4-dimethyl deriva-
tive 3g (entry 7). Based on the experimental results, the failure
for the dimethyl cases, 3e and 3f, might be due to the steric effect
of the ortho-methyl group, which makes the formation of the
palladacycle intermediate difficult.
When we add some water to the reaction mixture of 3a, the
yield of 7a was decreased. When the reaction was carried out un-
der strictly controlled nitrogen atmosphere, compound 7a was ob-
tained in a similar yield. From these experiments, we tentatively
propose the mechanism involving the Oxone as a plausible source
of oxygen atom (Scheme 2): Oxidative insertion of Pd(0) into the
weak O–O bond of Oxone1a and the liberation of product (ArOH)
and KHSO4. Further studies on the reaction mechanism and
the synthetic applicability of these findings are actively under
progress.11–13
6. Kim, S. H.; Kim, K. H.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 2008, 49, 1948–
1951.
7. For the synthesis and biological activities of 2-(2-hydroxyaryl)pyridine
derivatives, see: (a) Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.;
Masuda, T.; Shintani, T.; Sato, H.; Koriyama, Y.; Fukushima, K.; Nunami, N.;
Yamauchi, M.; Fuchikami, K.; Komura, H.; Watanabe, A.; Ziegelbauer, K. B.;
Bacon, K. B.; Lowinger, T. B. Bioorg. Med. Chem. Lett. 2004, 14, 4019–4022; (b)
Murata, T.; Shimada, M.; Kadono, H.; Sakakibara, S.; Yoshino, T.; Masuda, T.;
Shimazaki, M.; Shintani, T.; Fuchikami, K.; Bacon, K. B.; Ziegelbauer, K. B.;
Lowinger, T. B. Bioorg. Med. Chem. Lett. 2004, 14, 4013–4017; (c) Murata, T.;
Shimada, M.; Sakakibara, S.; Yoshino, T.; Kadono, H.; Masuda, T.; Shimazaki,
M.; Shintani, T.; Fuchikami, K.; Sakai, K.; Inbe, H.; Takeshita, K.; Niki, T.;
Umeda, M.; Bacon, K. B.; Ziegelbauer, K. B.; Lowinger, T. B. Bioorg. Med. Chem.
Lett. 2003, 13, 913–918; (d) Hong, F.; Hollenback, D.; Singer, J. W.; Klein, P.
Bioorg. Med. Chem. Lett. 2005, 15, 4703–4707; (e) Nason, D. M.; Heck, S. D.;
Bodenstein, M. S.; Lowe, J. A., III; Nelson, R. B.; Liston, D. R.; Nolan, C. E.;
Lanyon, L. F.; Ward, K. M.; Volkmann, R. A. Bioorg. Med. Chem. Lett. 2004, 14,
4511–4514; (f) Cheney, I. W.; Yan, S.; Appleby, T.; Walker, H.; Vo, T.; Yao, N.;
Hamatake, R.; Hong, Z.; Wu, J. Z. Bioorg. Med. Chem. Lett. 2007, 17, 1679–
1683.
8. For the applications of 2-(2-hydroxyaryl)pyridine derivatives, see: (a)
Reichardt, C.; Che, D.; Heckenkemper, G.; Schafer, G. Eur. J. Org. Chem. 2001,
2343–2361; (b) Lam, F.; Xu, J. X.; Chan, K. S. J. Org. Chem. 1996, 61, 8414–8418.
9. For our recent reports on the synthesis of pyridine and related compounds
from Baylis-Hillman adducts, see: (a) Gowrisankar, S.; Lee, H. S.; Kim, J. M.;
Kim, J. N. Tetrahedron Lett. 2008, 49, 1670–1673; (b) Lee, M. J.; Kim, S. C.; Kim, J.
N. Bull. Korean Chem. Soc. 2006, 27, 439–442; (c) Park, D. Y.; Lee, M. J.; Kim, T.
H.; Kim, J. N. Tetrahedron Lett. 2005, 46, 8799–8803.
10. The following is typical procedure for the synthesis of 7a: A mixture of 3a
(168 mg, 0.5 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), Oxone (1.54 g, 2.5 mmol) in
PEG-3400 (1.0 g) and tert-butanol (2 mL) was heated to 80–90 °C for 2 h. After
cooling to room temperature, the reaction mixture was poured into water and
extracted with ether. Pure product 7a was obtained by column separation
process (hexanes/CH2Cl2/EtOAc, 20:3:1) as a yellow solid, 134 mg (76%). Other
compounds were synthesized analogously and the selected spectroscopic data
of 7a, 7c, 7d, 7h, 4a and 5a are as follows.
In summary, we disclosed the synthesis of poly-substituted pyr-
idines functionalized with hydroxyl group regioselectively via the
Pd-mediated C–H activation process. Further studies on the reac-
tion mechanism and the biological activities of prepared com-
pounds are currently underway.
Compound 7a: 76%; Yellow solid, mp 146–147 °C; IR (KBr) 3446, 1601, 1450,
1439 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 2.56 (s, 3H), 4.05 (s, 2H), 6.39–6.45 (m,
;
1H), 6.81 (dd, J = 8.1 and 1.5 Hz, 1H), 6.99 (dd, J = 8.1 and 1.5 Hz, 1H), 7.08–7.36
(m, 11H), 7.48 (s, 1H), 13.18 (br s, 1H); 13C NMR (CDCl3, 75 MHz) d 21.82, 38.21,
117.82, 117.86, 120.24, 126.55, 127.41, 128.62, 128.71, 128.73, 129.17, 130.06,
131.21, 132.44, 133.93, 138.58, 140.21, 142.14, 152.34, 153.21, 158.39; ESIMS
m/z 352 (M++1). Anal. Calcd for C25H21NO: C, 85.44; H, 6.02; N, 3.99. Found: C,
85.21; H, 6.34; N, 3.87.
Acknowledgements
This study was financially supported by Chonnam National
University, 2007. Spectroscopic data were obtained from the Korea
Basic Science Institute, Gwangju branch.
Compound 7c: 58%; White solid, mp 137–138 °C; IR (KBr) 3419, 1602, 1568,
1424, 1086 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 2.55 (s, 3H), 4.04 (s, 2H), 6.38
;
(dd, J = 8.4 and 2.1 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 7.14–
7.39 (m, 10H), 7.47 (s, 1H), 13.76 (br s, 1H); 13C NMR (CDCl3, 75 MHz) d 21.77,
38.21, 117.99, 118.09, 118.57, 126.63, 127.66, 128.62, 128.76, 128.94, 129.09,
131.90, 132.77, 133.96, 135.14, 138.42, 139.84, 142.26, 151.45, 153.19, 159.62;
ESIMS m/z 386 (M++1). Anal. Calcd for C25H20ClNO: C, 77.81; H, 5.22; N, 3.63.
Found: C, 78.03; H, 5.47; N, 3.60.
References and notes
1. For the Pd-mediated ortho-alkylation of 2-arylpyridine and related compounds,
see: (a) Zhang, Y.; Feng, J.; Li, C.-J. J. Am. Chem. Soc. 2008, 130, 2900–2901; (b)
Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128,
78–79; (c) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634–
12635.
Compound 7d: 61%; Pale yellow solid, mp 133–134 °C; IR (KBr) 3419, 1626,
1450, 1426 cmꢀ1 1H NMR (CDCl3, 500 MHz) d 2.23 (s, 3H), 2.54 (s, 3H), 4.03 (s,
;