1860
L. Bernardi et al.
LETTER
(12) Tsunoda, T.; Uemoto, K.; Nagino, C.; Kawamura, M.; Kaku,
H.; Ito, S. Tetrahedron Lett. 1999, 40, 7355.
(13) Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Fini, F.; Pettersen,
D.; Ricci, A. J. Org. Chem. 2006, 71, 9869.
(14) Armstrong, A.; Convine, N. J.; Popkin, M. E. Synlett 2006,
1589.
(15) 1,3-Bis[3,5-bis(trifluoromethyl)diphenyl]thiourea and the
chiral mixed thiourea-cinchona organocatalyst discovered
by Soós were used in these experiments. See: (a) Schreiner,
P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217. (b) Vakulya,
B.; Varga, S.; Csámpai, A.; Soós, T. Org. Lett. 2005, 7,
1967.
In conclusion, we have accomplished the first organocat-
alyzed phase-transfer enantioselective conjugate addition
of cyanide ion derived from acetone cyanohydrin to b,b¢-
disubstituted nitroolefins that leads to the efficient forma-
tion of an all-carbon quaternary stereogenic center. On-
going studies will include the screening of other
organocatalytic species aimed at improving the enantio-
selectivity of these reactions and their further extension to
other polysubstituted Michael acceptors.
(16) For a practical synthesis of this substrate, see: Ohta, H.;
Kobayashi, N.; Ozaki, K. J. Org. Chem. 1989, 54, 1802.
(17) Czekelius, C.; Carreira, E. M. Org. Process Res. Dev. 2007,
11, 633.
Acknowledgment
We are thankful for the funding from the National Project (PRIN)
‘Stereoselezione in sintesi Organica: Metodologie ed Applicazioni
2007’ and the ‘ex-60% MUR Funding 2007’. The financial support
of the Merck-ADP Grant 2007 is also gratefully acknowledged.
(18) Nitroalkenes were prepared according to the following
published procedures: (a) See ref. 3. (b) Martin, N. J. A.;
Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 127, 8976.
(19) N,O-Di[3,5-bis(trifluoromethyl)benzyl]cinchoninium
bromide (2c): 3,5-Bis(trifluoromethyl)benzyl bromide
(0.48 mL, 2.6 mmol) was added to a suspension of
cinchonine (0.59 g, 2.0 mmol) in toluene (6 mL). The
mixture was vigorously stirred at 90 °C for 18 h and then
cooled to r.t. and filtered. The white solid obtained (0.82 g,
68%) was washed with toluene (2 × 25 mL), dried under
reduced pressure and used without further purification. 3,5-
Bis(trifluoromethyl)benzyl bromide (0.37 mL, 2.0 mmol)
and 50% aq NaOH (53 mg, 1.33 mmol) were added to a
solution of N-3,5-bis(trifluoromethyl)benzylcinchoninium
bromide (0.4 g, 0.66 mmol) in CH2Cl2 (7 mL). The reaction
mixture was stirred for 6 h at r.t. and then quenched by
addition of H2O. The aqueous layer was extracted with
CH2Cl2 (2 × 5 mL) and the combined organic layers were
dried (MgSO4), filtered and evaporated in vacuo. The crude
product was purified by chromatography on silica gel
column with hexane–EtOAc–MeOH–CH2Cl2 (5:4:2:1) as
eluent to give the title product as a pale yellow solid (0.32 g,
58%); mp 162–165 °C; [a]D20 +48.3 (c = 0.94, CHCl3). 1H
NMR (400 MHz, CDCl3): d = 8.93 (br s, 1 H), 8.74 (d, J =
7.4 Hz, 1 H), 8.37 (s, 2 H), 8.06 (s, 2 H), 7.90 (s, 2 H), 7.81
(s, 1 H), 7.54 (t, J = 7.05 Hz, 2 H), 7.43 (m, 1 H), 6.76 (br s,
1 H), 6.60 (d, J = 12.3 Hz, 1 H), 5.80 (m, 1 H), 5.53 (d, J =
12.4 Hz, 1 H), 5.23 (d, J = 10.5 Hz, 2 H), 5.04 (d, J = 17.0
Hz, 2 H), 4.82 (d, J = 12.4 Hz, 1 H), 4.65 (br s, 1 H), 4.15 (t,
J = 10.0 Hz, 1 H), 3.29 (t, J = 11.0 Hz, 1 H), 2.65 (m, 1 H),
2.49 (m, 3 H), 1.84 (m, 2 H), 1.49 (m, 1 H). 13C NMR (100
MHz, CDCl3): d = 149.2, 148.5, 139.4, 139.3, 139.0, 134.5,
134.05, 132.4 (q, J = 34 Hz), 130.0, 129.9, 128.8, 127.8,
127.5, 123.05 (q, J = 273 Hz, CF3), 124.9, 124.4, 122.5 (q,
J = 273 Hz, CF3), 122.4, 118.4, 75.1, 69.9, 66.8, 60.9, 56.0,
55.0, 37.3, 26.8, 23.4, 22.1. 19F NMR (376 MHz, CDCl3):
d = 62.9 (s, 6 F), –63.0 (s, 6 F). IR (CHCl3): 3367, 3030,
2960, 1371, 1278, 1176, 1142, 903 cm–1. ESI–MS (+): m/z =
779 [M+]. ESI–MS (–): m/z = 81, 79 [M–]. Anal. Calcd for
C37H31BrF12N2O: C, 53.70; H, 3.78; N, 3.39. Found: C,
53.74; H, 3.72; N, 3.44.
References and Notes
(1) (a) Perlmutter, P. Conjugate Addition Reactions in Organic
Synthesis; Pergamon Press: Oxford, 1992. (b) Vicario, J. L.;
Badía, D.; Carrillo, L. Synthesis 2007, 2065. (c) Sulzer-
Mossé, S.; Alexakis, A. Chem. Commun. 2007, 3123.
(d) López, F.; Minnaard, A. J.; Feringa, B. L. Acc. Chem.
Res. 2007, 40, 179. (e) Tomioka, K.; Nagaoka, Y.
Conjugate Addition of Organometallic Reagents, In
Comprehensive Asymmetric Catalysis, Vol. 3; Jacobsen, E.
N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer-Verlag: New
York, 1999, 1105–1120.
(2) (a) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini,
M. Chem. Rev. 2005, 105, 933. (b) Ono, N. The Nitro
Group in Organic Synthesis; Wiley: New York, 2001.
(c) Perekalin, V. V.; Lipina, E. S.; Berestovitskaya, V. M.;
Efremov, D. A. Nitroalkenes; John Wiley & Sons:
Chichester, 1994. (d) Nitro Compounds, Recent Advances in
Synthesis and Chemistry: Organic Nitro Chemistry Series;
Feuer, H.; Nielsen, A. T., Eds.; Wiley-VCH: Weinheim,
1990.
(3) Wu, J.; Mampreian, D. M.; Hoveyda, A. H. J. Am. Chem.
Soc. 2005, 127, 4584.
(4) (a) Jacobsen, E. N.; Mazet, C. Angew. Chem. Int. Ed. 2008,
47, 1762. (b) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J.
Am. Chem. Soc. 2004, 126, 9928. (c) Sammis, G. M.;
Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 4442.
(5) Mita, T.; Sasaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2005, 127, 514.
(6) Berkessel, A.; Gröger, H. In Asymmetric Organocatalysis:
From Biomimetic Concept to Applications in Asymmetric
Synthesis; Wiley-VCH: Weinheim, 2005.
(7) (a) Synoradzki, L.; Rowicki, T.; Wlostowski, M. Org.
Process Res. Dev. 2006, 10, 103. (b) Brunel, J. M.; Holmes,
I. P. Angew. Chem. Int. Ed. 2004, 43, 2752.
(8) Ooi, T.; Uematsu, Y.; Maruoka, K. J. Am. Chem. Soc. 2006,
128, 2548; and references therein.
(9) (a) Takamura, M.; Hamashima, Y.; Usuida, H.; Kanai, M.;
Shibasaki, M. Angew. Chem. Int. Ed. 2000, 39, 1650.
(b) Liu, X.; Qin, B.; Zhou, X.; He, B.; Feng, X. J. Am. Chem.
Soc. 2005, 127, 12224. (c) Wang, J.; Hu, X.; Jiang, J.; Gou,
S.; Huang, X.; Liu, X.; Feng, X. Angew. Chem. Int. Ed. 2007,
46, 8468.
(10) Gregory, R. J. H. Chem. Rev. 1999, 99, 3649; and references
therein.
(11) Mitchell, D.; Koenig, T. M. Tetrahedron Lett. 1992, 33,
3281.
(20) General Procedure for the Hydrocyanation of b,b¢-
Disubstituted Nitroolefins: Catalyst (8.3 mg, 0.01 mmol)
was added to a screw-tapped test tube that contained a
mixture of nitroolefin (0.1 mmol), acetone cyanohydrin
(0.018 mL, 0.2 mmol) and toluene (1 mL). After the
resulting mixture had been cooled to –30 °C finely powdered
K2CO3 (28 mg, 0.2 mmol) was added in one portion. The
reaction mixture was then vigorously stirred at the same
temperature without any precaution to exclude moisture or
air. After 72 h, the reaction product was directly isolated by
Synlett 2008, No. 12, 1857–1861 © Thieme Stuttgart · New York