F
A. Palmieri et al.
LETTER
solid; mp 124–126 °C. IR (Nujol): 1374, 1151 cm–1.
elimination processes can be utilized to generate a vinyl-
ogous imino derivative, which can be made to react with
stabilized carbanions. The overall strategy represents a
new example of umpoled synthon, which can be profit-
ably used to prepare branched 3-substituted indoles bear-
ing different functional groups.
1H NMR (400 MHz, CDCl3): d = 1.63 (s, 9 H), 2.37 (s, 3 H),
4.42 (s, 2 H), 7.08–7.12 (m, 1 H), 7.19 (d, 2 H, J = 10.7 Hz),
7.21–7.28 (m, 2 H), 7.45 (s, 1 H), 7.59 (d, 2 H, J = 8.5 Hz),
8.09 (d, 1 H, J = 8.1). 13C NMR (75 MHz, CDCl3): d = 21.7,
28.2, 54.0, 84.3, 107.9, 115.2, 119.0, 122.9, 124.8, 126.2,
127.4, 128.7, 129.7,135.2, 136.7, 144.9, 149.8.
(16) Reaction of N-Boc-3-(Tosylmethyl) indole (11) with
Electrophiles
Acknowledgment
To a mixture of NaH (2 mmol) in anhyd DMF (5 mL),
sulfonyl indole 11 (1 mmol) was added at 0 °C. After 20 min
stirring at this temperature, the electrophile (1.1 mmol) was
added and stirring was continued for the appropriate time at
0 °C (see Table 1). The mixture was then cautiously
quenched by addition of cold H2O and then acidified with
AcOH. After extraction with Et2O (3 × 15 mL) the organic
phase was dried over MgSO4 and after removal of the
solvent the residue was purified by column chromatography
(hexanes–EtOAc, 8:2).
Spectroscopic Data for Representative Compounds
Compound 12a: mp 58–60 °C. IR (Nujol): 1598, 1370, 1155
cm–1. 1H NMR (400 MHz, CDCl3): d = 1.67 (s, 9 H), 2.35 (s,
3 H), 2.83–3.06 (m, 1 H), 3.10–3.28 (m, 1 H), 4.39 (dd, 1 H,
J = 4.0, 11.4 Hz), 4.92–5.12 (m, 2 H), 5.52–5.75 (m, 1 H),
7.05–7.21 (m, 3 H), 7.23–7.37 (m, 2 H), 7.44–7.60 (m, 3 H),
8.09 (d, 1 H, J = 8.4 Hz). 13C NMR (75 MHz, CDCl3): d =
21.8, 28.4, 32.6. 63.4, 84.5, 112.2, 115.3, 118.6, 119.4,
122.9, 124.8, 126.7, 129.4, 129.6, 133.3, 134.4, 135.3,
144.9, 149.5.
Compound 12f: mp 55–57 °C. IR (Nujol): 3310, 2133, 1368,
1151 cm–1. 1H NMR (400 MHz, CDCl3): d = 1.67 (s, 9 H),
1.85 (s, 1 H), 2.36 (s, 3 H), 3.04–3.11 (m, 1 H), 3.27–3.32
(m, 1 H), 4.56 (dd, 1 H, J = 4.1, 10.7 Hz), 7.10–7.17 (m, 3
H), 7.20–7.27 (m, 2 H), 7.52–7.62 (m, 3 H), 8.10 (d, 1 H,
J = 8.1 Hz). 13C NMR (75 MHz, CDCl3): d = 19.5, 21.8,
28.4, 62.2, 71.3, 79.3, 84.6, 115.4, 119.3, 123.0, 124.9,
126.7, 129.4, 129.5, 129.6, 129.8, 133.9, 135.2, 145.3,
149.5.
Financial support from University of Camerino and MIUR (Natio-
nal Project ‘Sintesi organiche ecosostenibili mediate da nuovi
sistemi catalitici’) is gratefully acknowledged.
References and Notes
(1) Simpkins, N. S. Sulphones in Organic Synthesis; Pergamon
Press: Oxford, 1993.
(2) Nájera, C.; Sansano, J. M. Recent Res. Dev. Org. Chem.
1998, 2, 637.
(3) Nájera, C.; Yus, M. Tetrahedron 1999, 55, 10547.
(4) (a) Das, I.; Pathak, T. Org. Lett. 2006, 8, 1303.
(b) Berkowitz, D. B.; Bose, M.; Asher, N. Org. Lett. 2001, 3,
2009. (c) For a classical procedure, see: Corey, E. J.;
Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1345.
(5) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563.
(6) (a) Nenajdenko, V. G.; Krasovskiy, A. L.; Balenkova, E. S.
Tetrahedron 2007, 63, 12481. (b) Meadows, D. C.; Gervay-
Hague, J. Med. Chem. Rev. 2006, 26, 793. (c) Back, T. G.
Tetrahedron 2001, 57, 5263.
(7) Petrini, M. Chem. Rev. 2005, 105, 3949.
(8) Petrini, M.; Torregiani, E. Synthesis 2007, 159.
(9) For some papers dealing with alkylation of a-amido sulfones
and elimination to the corresponding enecarbamates, see:
(a) Alonso, D. A.; Alonso, E.; Nájera, C.; Ramón, D. J.; Yus,
M. Tetrahedron 1997, 53, 4835. (b) Berthon, L.; Uguen, D.
Tetrahedron Lett. 1985, 26, 3975.
(10) (a) Ballini, R.; Palmieri, A.; Petrini, M.; Torregiani, E. Org.
Lett. 2006, 8, 4093. (b) Palmieri, A.; Petrini, M. J. Org.
Chem. 2007, 72, 1863. (c) Ballini, R.; Palmieri, A.; Petrini,
M.; Shaikh, R. R. Adv. Synth. Catal. 2008, 350, 129.
(11) (a) For some recent applications of gramines in synthesis,
see: Semenov, B. B.; Granik, V. G. Pharm. Chem. J. 2004,
38, 287. (b) de la Herrán, G.; Segura, A.; Csákÿ, A. G. Org.
Lett. 2007, 9, 961. (c) Semenov, B. B.; Novikov, K. A.;
Lysenko, K. A.; Kachala, V. V. Tetrahedron Lett. 2006, 47,
3479. (d) Low, K. H.; Magomedov, N. A. Org. Lett. 2005, 7,
2003.
(12) Bandini, M.; Melloni, A.; Tommasi, S.; Umani-Ronchi, A.
Synlett 2005, 1199.
(13) (a) Faulkner, D. J. Nat. Prod. Rep. 2002, 19, 1. (b) Saxton,
J. E. In The Alkaloids; Cordell, G. A., Ed.; Academic Press:
New York, 1998. (c) Sundberg, R. J. Indoles; Academic
Press: New York, 1997. (d) Saxton, J. E. Nat. Prod. Rep.
1997, 559.
Compound 12l: mp 56–58 °C. IR (Nujol): 2248, 1376, 1153
cm–1. 1H NMR (400 MHz, CDCl3): d = 1.67 (s, 9 H), 2.35 (s,
3 H), 2.46–2.62 (m, 2 H), 2.80–2.96 (m, 2 H), 4.46 (dd, 1 H,
J = 4.7, 10.7 Hz), 7.12–7.18 (m, 3 H), 7.26–7.38 (m, 2 H),
7.51–7.60 (m, 3 H), 8.10 (d, 1 H, J = 8.1 Hz). 13C NMR (75
MHz, CDCl3): d = 15.5, 21.7, 24.7, 28.3, 62.3, 84.9, 110.5,
115.5, 118.3, 119.3, 123.3, 125.2, 126.7, 129.3, 129.8,
134.1, 137.8, 145.3, 149.7.
Compound 12m: mp 52–54 °C. IR (Nujol): 1742, 1374,
1156 cm–1. 1H NMR (400 MHz, CDCl3): d = 1.66 (s, 9 H),
2.34 (s, 3 H), 2.36–2.49 (m, 2 H), 2.67–2.78 (m, 2 H), 3.58
(s, 3 H), 4.52 (dd, 1 H, J = 4.3, 10.7 Hz), 7.10–7.20 (m, 3 H),
7.22–7.34 (m, 2 H), 7.48 (s, 1 H), 7.55 (d, 2 H, J = 8.1 Hz),
8.09 (d, 1 H, J = 8.1 Hz). 13C NMR (75 MHz, CDCl3): d =
21.7, 24.1, 28.3, 31.1, 51.8, 62.5, 84.6, 111.9, 115.4, 119.4,
123.0, 125.0, 126.6, 129.3, 129.6, 134.5, 135.4, 144.9,
149.8, 172.8.
(17) The free NH on the indole ring is mandatory for a successful
process since none of the nucleophilic reagents tested in this
reaction gives any result with N-Boc indoles 12.
(14) Liu, R.; Zhang, P.; Gan, T.; Cook, J. M. J. Org. Chem. 1997,
62, 7447.
(15) Synthesis of N-Boc-3-(Tosylmethyl) indole (11)
To a solution of N-Boc-3-(bromomethyl) indole (5 mmol,
1.55 g) in DMF (10 mL), Bu4NI (0.5 mmol, 0.18 g) and
TolSO2Na were added at r.t. After stiring for 2 h at this
temperature, cold H2O (30 mL) was added and the mixture
was extracted with EtOAc (3 × 30 mL). The organic phase
was dried over MgSO4, and after removal of the solvent the
residue was purified by column chromatography (hexanes–
EtOAc, 8:2) giving 1.54 g (80% yield) of pure 11 as a white
(18) Deprotection of N-Boc Sulfonyl Indoles 12 and Their
Reaction with Nucleophiles
N-Boc indole 12 (1 mmol) was dissolved in a mixture of
TFA–CH2Cl2 (1:1, 10 mL) and stirring was continued for 3
h at r.t. After evaporation of the solvents at reduced pressure,
the crude sulfonyl indole was purified by column
chromatography (hexanes–EtOAc, 8:2). Reaction of
sulfonyl indoles 13 with nucleophiles was carried out
according to our previously published procedure (ref. 10c).
Synlett 2008, No. x, A–G © Thieme Stuttgart · New York