F. Wang et al. / Bioorg. Med. Chem. 16 (2008) 8413–8418
8417
27.3, 27.1, 25.1, 22.7, 19.2, 14.1; HRMS calcd for C51H80O6SiNa
4.2. Cytotoxicity assay
(M+Na+) 839.5622, found, 839.5613.
Cells were cultured in RPMI medium supplemented with 10%
fetal bovine serum and penicillin-streptomycin-fungizone mixture
4.1.11. THF-butenolide (S)-13
Grubb’s II catalyst (9.3 mg, 0.01 mmol) in CH2Cl2 (1 mL) was in-
(100 U/mL, 100 lg/mL, and 0.25 lg mL, respectively) and main-
jected, at rt, into a degassed solution of alcohol
3
(36 mg,
tained in a 37 °C humidified 5% CO2 incubator. On the day before
0.11 mmol), and (S)-4 (50 mg, 0.178 mmol), in CH2Cl2 (2 mL). The
the drug treatment, cells were plated onto each well of 96-well
reaction mixture was stirred for 20 h at rt, then quenched by addi-
plate at 2000 cells/well (200 ll of the medium per well). After
tion of DMSO (50
l
L) and concentrated in vacuo. FCC of the residue
24 h, cells were treated with different concentrations of com-
pounds and incubated for 72 h. After the incubation, cell growth
was evaluated using a CellTiter 96 AQueous One Solution Cell Pro-
liferation Assay (Promega). UV absorption (490 nm) of each well
was quantified by SpectraMax Plus 384 microplate reader (Molec-
ular Devices). The data are provided as Supplementary
Information.
provided (S)-13 (36 mg, 57% based on 3), and the homodimer of
(S)-4 (ca. 27%). For (S)-13: clear oil; Rf = 0.50 (80% EtOAc: petro-
leum ether); 1H NMR (CDCl3) d 7.01 (s, 1H), 5.76–5.82 (m, 1H),
5.41–5.46 (m, 1H), 5.02–5.03 (m, 1H), 3.85–3.92 (m, 3H), 3.61 (s,
br, 1H), 3.42–3.44 (m, 1H), 2.29 (t, J = 7.5 Hz, 2H), 2.10 (m, 2H),
1.97–2.01 (m, 2H), 1.28–1.70 (m, 44H), 0.90 (t, J = 6.6 Hz, 3H);
13C NMR (CDCl3) d 173.9, 148.9, 134.3, 128.6, 82.8, 82.5, 76.8,
76.7, 75.5, 74.0, 71.7, 37.4, 36.9, 32.3, 31.9, 29.7 (five signals),
29.6, 29.4, 29.3, 29.2, 27.4, 25.6, 25.5, 25.2, 22.7, 19.2, 14.2; HRMS
(FAB) calcd for C35H63O6 (M+H+) 579.4614, found 579.4625.
Acknowledgments
This investigation was supported by Grant R01 GM57865 from
the National Institutes of Health (NIH). ‘Research Centers in Minor-
ity Institutions’ Award RR-03037 from the National Center for Re-
search Resources of the NIH, which supports the infrastructure and
instrumentation of the Chemistry Department at Hunter College, is
also acknowledged.
4.1.12. (9R)-4-deoxyannoreticuin (1)
Chlorotris(triphenylphosphine)-rhodium (I) (7.1 mg, 0.0077
mmol) was added to a degassed solution of (R)-12 (23 mg,
0.028 lmol) in a mixture of benzene–EtOH (2 mL, 50% v/v). The
mixture was stirred under an atmosphere of hydrogen for 12 h,
at which time the solvent was removed under reduced pressure.
FCC of the residue gave an inseparable mixture of the 13,14-dihy-
dro- and tetrahydro derivatives of (R)-12 (16 mg, 70%): Rf = 0.50
(30% EtOAc: petroleum ether).
A mixture of 5% AcCl in MeOH (0.5 mL) was added at room tem-
perature to a solution of the material obtained in the previous step
(10 mg, 12.2 lmol) in CH2Cl2 (1 mL). The mixture was stirred at
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
this temperature for 3 h, diluted with CH2Cl2, and washed with a
saturated aqueous NaHCO3. The organic layer was dried (Na2SO4),
filtered, and concentrated under reduced pressure. FCC of the res-
idue afforded a mixture of 1 and the completely hydrogenated
product (7.2 mg, 72%) in an approximate 7:1 ratio: Rf = 0.35 (60%
EtOAc: petroleum ether). Repeated FCC provided a sample of 1 that
1. (a) Zeng, L.; Ye, Q.; Oberlies, N. H.; Shi, G.; Gu, Z. M.; He, K.; McLaughlin, J. L. Nat.
Prod. Rep. 1996, 13, 275–306; (b) Alali, F. Q.; Liu, X. X.; McLaughlin, J. L. J. Nat.
Prod. 1999, 62, 504–540; (c) Bermejo, A.; Figadere, B.; Zafra-Polo, M.-C.;
Barrachina, I.; Estornell, E.; Cortes, D. Nat. Prod. Rep. 2005, 22, 269–303.
2. (a) Lewis, M. A.; Arnason, J. T.; Philogene, B. J. R.; Rupprecht, J. K.; McLaughlin, J.
L. Pesticide Biochem. Physiol. 1993, 45, 15–23; (b) Londershausen, M.; Leicht, W.;
Lieb, F.; Moeshler, H.; Weiss, H. Pesticide Sci. 1991, 33, 427–438.
3. (a) Wolvetang, E. J.; Johnson, K. L.; Krauser, K.; Ralph, S. J.; Linnane, A. W. FEBS Lett.
1994, 339, 40–44; (b) Chiu, H. F.; Chih, T. T.; Hsian, Y. M.; Tseng, C. H.; Wu, M. J.;
Wu, Y. C. Biochem. Pharmacol. 2003, 65, 319–327; (c) Yuan, S. S.; Chang, H. L.;
Chen, H. W.; Kuo, F. C.; Liaw, C. C.; Su, J. H.; Wu, Y. C. Life Sci. 2006, 78, 869–874.
4. Morré, D. J.; Cabo, R. D.; Farley, C.; Oberlies, N. H.; McLaughlin, J. L. Life Sci.
1995, 56, 343–348.
5. For recent examples: (a) Takada, M.; Kuwabara, K.; Nakato, H.; Tanaka, A.;
Iwamura, H.; Miyoshi, H. Biochim. Biophys. Acta 2000, 1460, 302–310; (b) Arndt,
S.; Emde, U.; Baurle, S.; Friedrich, T.; Grubert, L.; Koert, U. Chem. Eur. J. 2001, 7,
993–1005; (c) Duval, R. A.; Lewin, G.; Peris, E.; Chahboune, N.; Garofano, A.;
Dröse, S.; Cortes, D.; Brandt, U.; Hocquemiller, R. Biochemistry 2006, 45, 2721–
2728.
6. Selected examples: (a) Hoye, T. R.; Zhuang, Z. P. J. Org. Chem. 1988, 53, 5578–
5580; (b) Takahashi, S.; Maeda, K.; Hirota, S.; Nakata, T. Org. Lett. 1999, 1, 2025–
2028; (c) Marshall, J. A.; Piettre, A.; Paige, M. A.; Valeriote, F. J. Org. Chem. 2003,
68, 1780–1785; (d) Narayan, R. S.; Borhan, B. J. Org. Chem. 2006, 71, 1416–1429;
(e) Curran, D. P.; Zhang, Q.; Lu, H.; Gudipati, V. J. Am. Chem. Soc. 2006, 128,
9943–9956.
7. Hopp, D. C.; Alali, F. Q.; Gu, Z. M.; Mclaughlin, J. L. Phytochemistry 1998, 47,
803–809.
8. Hopp, D. C.; Zeng, L.; Gu, Z.-M.; Kozlowski, J. F.; McLaughlin, J. L. J. Nat. Prod.
1997, 60, 581–586.
contained less than 10% of the completely reduced material as a
22
white waxy solid; [
a]
+19 (c 2.00, CH2Cl2); 1H NMR (CDCl3) d
D
6.96 (s, 1H), 4.96–4.98 (m, 1H), 3.76–3.80 (m, 2H), 3.56 (s, br,
1H), 3.36–3.41 (m, 2H), 2.25–2.27 (m, 4H, CH2, 2ꢁ OH, D2O ex.),
1.96–1.97 (m, 2H), 1.24–1.52 (m, 48H), 0.87 (t, J = 6.8 Hz, 3H);
13C NMR (CDCl3) d 173.8, 148.9, 134.3, 82.7, 77.4, 74.0 (two sig-
nals), 71.9, 37.4, 33.5, 33.4, 31.9, 29.7 (three signals), 29.6 (three
signals), 29.3, 29.1, 28.7, 27.3, 25.6 (three signals), 25.5, 25.2,
22.7, 19.2, 14.1; HRMS (FAB) calcd for C35H65O6 (M+H) 581.4781,
found 581.4794.
4.1.13. (9S)-4-deoxyannoreticuin (2)
A solution of sodium acetate (280 mg, 3.41 mmol) in water
(5 mL) was added via a syringe pump, for over 4 h, to a mixture
of (S)-13 (24 mg, 0.041 mmol), p-toluenesulfonyl hydrazide
(511 mg, 2.74 mmol), and DME (4 mL) at reflux. After cooling to
rt, the reaction mixture was poured into water and extracted with
EtOAc. The combined organic extract was washed with 2 M HCl,
water, and brine, dried (Na2SO4), filtered, concentrated under re-
9. Zeng, L.; Ye, Q.; Oberlies, N. H.; Shi, G.; Gu, Z.-M.; He, K.; McLaughlin, J. L. Nat.
Prod. Rep. 1996, 13, 275–306.
10. For related examples of olefin metathesis strategies in THF acetogenin
synthesis see: (a) Evans, P. A.; Cui, J.; Gharpure, S. J.; Polosukhin, A.; Zhang,
H.-R. J. Am. Chem. Soc. 2003, 125, 14702–14703; (b) Zhu, L.; Mootoo, D. R. J. Org.
Chem. 2004, 69, 3154–3157; (c) Das, S.; Li, L.-S.; Abraham, S.; Chen, Z.; Sinha, S.
C. J. Org. Chem. 2005, 70, 5922–5931; (d) Crimmins, M. T.; Zhang, Y.; Diaz, F. A.
Org. Lett. 2006, 8, 2369–2372; (e) Hoye, T. R.; Eklov, B. M.; Jeon, J.; Khoroosi, M.
Org. Lett. 2006, 8, 3383–3386; (f) Marshall, J. A.; Sabatini, J. J. Org. Lett. 2006, 8,
3557–3560; (g) Takahashi, S.; Hongo, Y.; Ogawa, N.; Koshino, H.; Nakata, T. J.
Org. Chem. 2006, 71, 6305–6308; (h) Quinn, K. J.; Smith, A. G.; Cammarano, C.
M. Tetrahedron 2007, 63, 4881–4886.
duced pressure and purified by FCC to give 2 as a white waxy solid
22
(21.5 mg, 90%). Rf = 0.50 (80% EtOAc: petroleum ether); [
a]
+25
D
(c 4.00, CH2Cl2); 1H NMR (CDCl3) d 6.96 (s, 1H), 4.95–4.99 (m, 1H),
3.76–3.80 (m, 2H), 3.56 (s, br, 1H), 3.36–3.40 (m, 2H), 2.23–2.24
(m, 2H), 1.95–1.96 (m, 2H), 1.66 (m, 2H), 1.23–1.53 (m, 48H),
0.86 (t, J = 6.8 Hz, 3H); 13C NMR (CDCl3) d 173.8, 148.9, 134.3,
82.7, 82.6, 77.4, 74.0, 71.9, 37.4, 33.5, 33.4, 31.9, 29.7, 29.6, 29.3,
29.1, 28.7, 27.4, 25.6, 25.5, (two signals), 22.7, 19.2, 14.1; HRMS
calcd for C35H65O6 (M+H) 581.4781, found 581.4789.
11. a For application of ring closing metathesis to the cyclic ether residues in the
acetogenins: Ref. 10d.; (b) Prestat, G.; Baylon, C.; Heck, M. P.; Grasa, G. A.;
Nolan, S. P.; Mioskowski, C. J. Org. Chem. 2004, 69, 5770–5773.