Square-Planar Diacetatopalladium Complexes
[2] a) A. Zapf, M. Beller, Chem. Eur. J. 2001, 7, 908; b) M. Beller,
H. Fischer, W. A. Herrmann, K. Öfele, C. Brossmer, Angew.
Chem. Int. Ed. Engl. 1995, 34, 1848; c) R. B. Bedford, S. L.
Hazelwood (née Welch), M. E. Limmert, D. A. Albisson, S. M.
Draper, P. N. Scully, S. J. Coles, M. B. Hursthouse, Chem. Eur.
J. 2003, 9, 3216.
[3] a) T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald,
J. Am. Chem. Soc. 2005, 127, 4685; b) J. Yin, M. P. Rainka, X.
Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 1162; c)
J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J. Am.
Chem. Soc. 1999, 121, 9550; d) S. D. Walker, T. E. Barder, J. R.
Martinelli, S. L. Buchwald, Angew. Chem. Int. Ed. 2004, 43,
1871.
centrated in vacuo to 50 mL and then filtered through filter pulp
to remove the solid precipitate. The filtrate was evaporated to dry-
ness and the residue washed with diethyl ether (20 mL) to give 4
(yield 60%). 1H NMR (400 MHz, CDCl3, 25 °C): δ = 10.34 (d,
3JH,H = 10.0 Hz, 2 H, NH), 7.35–7.31 (m, 4 H), 7.27–7.15 (m, 6
3
H), 6.98 (s, 2 H), 4.39 (dd, JH,H = 12.1, 10.0 Hz, 2 H), 4.23 (s, 2
H), 3.08 (d, 3JH,H = 12.1 Hz, 2 H), 2.56 (s, 6 H), 2.28 (s, 6 H), 1.90
(s, 6 H), 1.79 (s, 6 H) ppm. 13C{1H} NMR (100 MHz, CDCl3,
25 °C): δ = 181.20, 148.43, 140.28, 138.23, 136.90, 136.23, 131.37,
130.18, 129.44, 125.37, 121.29, 49.00, 32.38, 25.34, 21.62, 19.67,
18.59 ppm. C37H44N2O4Pd (687.18): calcd. C 64.67, H 6.45, N
4.08; found C 64.90, H 6.59, N 3.99.
[4] a) B. Tao, D. W. Boykin, Tetrahedron Lett. 2002, 43, 4955; b)
D. A. Alonso, C. Najera, M. C. Pacheco, Org. Lett. 2000, 2,
1823; c) L. Botella, C. Najera, Angew. Chem. Int. Ed. 2002, 41,
179; d) H. Weissman, D. Milstein, Chem. Commun. 1999, 1901;
e) R. B. Bedford, C. S. Cazin, Chem. Commun. 2001, 1540; f)
G. A. Grasa, A. C. Hillier, S. P. Nolan, Org. Lett. 2001, 3, 1077.
[5] a) B. Tao, D. W. Boykin, J. Org. Chem. 2004, 69, 4330; b) B.
Tao, D. W. Boykin, Tetrahedron Lett. 2003, 44, 7993.
[6] L. Chahen, B. Therrien, G. Süss-Fink, J. Organomet. Chem.
2006, 691, 4257.
[7] J. R. Miecznikowski, R. H. Crabtree, Polyhedron 2004, 23,
2857.
[8] a) S. V. Kravtsova, I. P. Romm, A. I. Stash, V. K. Belsky, Acta
Crystallogr., Sect. C 1996, 52, 2201; b) S. Bouquillon, J.
Rouden, J. Muzart, M.-C. Lasne, M. Hervieu, A. Leclaire, B.
Tinant, C. R. Chim. 2006, 9, 1301.
X-ray Crystallographic Study: Crystals of 1–3 were mounted on
a Stoe Image Plate Diffraction system equipped with a φ circle
goniometer and
a Mo-Kα graphite-monochromated radiation
source (λ = 0.71073 Å). Data were collected in the φ range 0–200°,
in increments of 1.0°, 1.2°, and 1.0°, respectively, with the 2θ range
2.0–26° and Dmax–Dmin = 12.45–0.81 Å. The structures were solved
by direct methods using the program SHELXS-97.[15] Refinement
and all further calculations were carried out using SHELXL-97.[16]
The H-atoms were included in calculated positions in all complexes
and treated as riding atoms using the SHELXL default parameters.
The non-H atoms were refined anisotropically using weighted full-
matrix least-squares on F2. Crystallographic details are summa-
rized in Table 3. Figures 1, 2, and 4 were drawn with ORTEP[17]
and Figures 3 and 5 with MERCURY.[18]
[9] J. C. Barnes, J. D. Paton, J. R. Damewood, K. Mislow, J. Org.
Chem. 1981, 46, 4975.
[10] W. E. Geiger, N. Van Order, D. T. Pierce, T. E. Bitterwolf, A. L.
Rheingold, N. D. Chasteen, Organometallics 1991, 10, 2403.
[11] A. Alimardanov, L. Schmieder-van de Vomdervoort, A. H. M.
de Vries, Adv. Synth. Catal. 2004, 346, 1812.
CCDC-647487 (for 1), -647488 (for 2), and -647489 (for 3) contain
the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[12] J. H. Kirchhoff, M. R. Netherton, I. D. Hills, G. C. Fu, J. Am.
Chem. Soc. 2002, 124, 13662.
[13] T. Brenstrum, D. A. Gerritsma, G. M. Adjabeng, C. S.
Frampton, J. Britten, A. J. Robertson, J. McNulty, A. Capretta,
J. Org. Chem. 2004, 69, 7635.
[14] A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers,
H. J. W. Henderickz, J. G. de Vries, Org. Lett. 2003, 5, 3285.
[15] G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467.
[16] G. M. Sheldrick, SHELXL-97, University of Göttingen, Ger-
many, 1999.
Catalytic Reactions: The catalyst was added (in the molar ratio
given in Tables 1 and 2) to a solution of K2CO3·1.5H2O (138 mg,
0.8 mmol), phenylboronic acid (91 mg, 0.75 mmol), and the aryl
bromide (0.5 mmol) in toluene (5 mL) in a Schlenk tube and the
mixture heated to the desired temperature (Tables 1 and 2) and
stirred for 18 h. After cooling, the solution was filtered through a
small silica gel column then the silica gel was eluted with diethyl
ether (20 mL). The filtrate was combined with the ether washings
and the solution obtained analyzed by GC.
[17] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.
[18] I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Mac-
rae, P. McCabe, J. Pearson, R. Taylor, Acta Crystallogr., Sect.
B 2002, 58, 389.
[1] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; b) S.
Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58, 9633;
c) A. Suzuki, J. Organomet. Chem. 2002, 653, 83–90; d) F.
Bellina, A. Carpita, R. Rossi, Synthesis 2004, 15, 2419.
Received: May 16, 2007
Published Online: September 12, 2007
Eur. J. Inorg. Chem. 2007, 5045–5051
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5051