1442
LETTERS
SYNLETT
10
The phenylglycine-derived amino alcohol 5, obviously a regioisomer
(2) Beck, A. K.; Bastani, B.; Plattner, D. A.; Petter, W.; Seebach, D.;
Braunschweiger, H.; Gysi, P.; LaVecchia, L. Chimia 1991, 45,
238. Dahinden, R.; Beck, A. K.; Seebach, D. In Encyclopedia of
Reagents for Organic Synthesis; Paquette, L. A., Ed.; Vol. 3,
Wiley: Chichester, 1995; p 2167 and references given therein.
11
of reagent 1, was used in enantioselective ketone reductions and
allylic oxidations previously. When the regioisomers 1 and 5 were
condensed with phenolic aldehydes 6, the imines 7 and 8 resulted.
12
13
Titanium complexes derived from ligands 7 were recently isolated and
characterized. In order to compare the efficiency of the regioisomeric
14
(3) Braun, M.; Devant, R. Tetrahedron Lett. 1984, 25, 5031. Braun,
M.; Gräf, S. Org. Synth. 1993, 72, 38. Braun, M.; Sacha, H. J.
Prakt. Chem. 1993, 335, 653. Braun, M.; Sacha, H.; Galle, D.;
Baskaran, S. Pure Appl. Chem. 1996, 68, 561.
chiral auxiliaries 1 and 5, titanium complexes were generated from their
imines 7 and 8 by treatment with titanium tetraisopropoxide followed by
evaporation of 2-propanol. The catalysts formed thereby were used in
15
the addition of diethylzinc to benzaldehyde, a conversion previously
(4) Itsuno, S.; Nakano, M.; Miyazaki, K.; Masuda, H.; Ito, K.; Hirao,
A.; Nakahama, S. J. Chem. Soc., Perkin Trans. I 1985, 2039.
Hayashi, M.; Miyamoto, Y.; Inoue, T.; Oguni, N. J. Org. Chem.
1993, 58, 1515. Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am.
Chem. Soc. 1987, 109, 5551. Corey, E. J.; Bakshi, R. K.; Shibata,
S.; Chen, C.-P.; Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925.
Corey, E. J.; Shibata, S.; Bakshi, R. K. J. Org. Chem. 1988, 53,
2861. Enders, D.; Bhushan, V. Tetrahedron Lett. 1988, 29, 2437.
See also ref. 15e−h.
16
not mediated by imine-alkoxytitanium complexes. The enantiomeric
1
excess of the alcohol 9 obtained thereby was determined by H NMR
17
analysis of the corresponding Mosher ester. The titanium complexes
derived from 7 and 8, respectively, were used in amounts of 10 to 20
mole percent.
Et2Zn (2.0 equiv.)
O
OH
7 or 8 (10−20 mol%)
Ti(OiPr)4 (10−20 mol%)
Ph
H
(5) Braun, M.; Gräf, S.; Herzog, S. Org. Synth. 1993, 72, 32.
Ph
Et
toluene
(R)-9
(6) Fleischer, R.; Galle, D.; Braun, M. Liebigs Ann./Recueil 1997,
1189.
Scheme 4
(7) For a Ritter reaction rendered by triflic acid, see: Senanayake, C.
H.; Larsen, R. D.; DiMichelle L. M., Liu, J.; Toma, P. H.; Ball, R.
G.; Verhoeven, T. R.; Reider, P. J. Tetrahedron: Asymmetry 1996,
7, 1501.
(8) The specific rotation of the heterocyclic compound (R)-4 was
20
measured to be [α]
= +231 (c = 1, CHCl ). In the light of this
3
D
value, a recent report on the synthesis of enantiopure (R)- and (S)-
4 seems obsolete, see: Lopez, L.; Farinola, G. M.; Paradiso, V.;
Mele, G.; Nacci, A. Tetrahedron 1997, 53, 10817.
(9) Racemic 1 was obtained by 1,3-dipolar cycloadditions of different
benzhydrylisonitrile ylides to benzaldehyde followed by cleavage
of the resulting oxazoline, see: Bittner, G.; Witte, H.; Hesse, G.
Justus Liebigs Ann. Chem. 1968, 713, 1. Uminski, M; Jawdosiuk,
M. Pol. J. Chem. 1983, 57, 67.
(10) McKenzie, A.; Wills, G. O. J. Chem. Soc. 1925, 127, 283.
(11) Berenguer, R.; Garcia, J.; Vilarrasa, J. Tetrahedron: Asymmetry,
1994, 5, 165. Prasad, K. R. K.; Joshi, N. N. Tetrahedron:
Asymmetry 1996, 7, 3147.
As shown in Table 1, only moderate enantioselectivities were obtained
with the phenylglycine-derived imines 7 (entries 1 and 2). A significant
improvement was brought about when the chiral ligands 8 formed from
the amino alcohol 1 were used (entries 3-5). Furthermore, a t-butyl
group in ortho position to the phenol residue turned out to be crucial for
enantioselectivity. A final improvement came from the introduction of a
methoxy substituent in para position to the phenolic group in the imine
(12) Sekar, G.; DattaGupta, A.; Singh, V. K. J. Org. Chem. 1998, 63,
2961.
(13) The aldehydes 6a,c are commercially available. For the
preparation of 6b, see: Hayashi, M.; Kaneda, H.; Oguni, N.
Tetrahedron: Asymmetry 1995, 6, 5743. 6d, see: Larrow, J. F.;
Jacobsen, E. N. J. Org. Chem. 1994, 59, 1939.
18
8d. The electronic effect of that substituent provided an e.e. of 92% in
the diethylzinc addition (entry 6). Thus, the enantioselectivity relies
mainly on the stereogenic center bearing a hydroxy rather than an amino
(14) Fleischer, R.; Wunderlich, H.; Braun, M. Eur. J. Org. Chem. 1998,
15e,19
20
1063.
group,
so that the novel amino alcohol 1 proved itself to be
superior to the regioisomeric compound 5. The role the
diarylaminomethyl group may play in asymmetric synthesis remains to
be determined by further investigations.
(15) For reviews on enantioselective variants of this reaction, see: a)
Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833. b) Noyori, R.
Asymmetric Catalysis in Organic Synthesis; Wiley: New York,
1994. c) Devant, R. M.; Radunz, H.-E. In Houben-Weyl, 4th ed.,
Vol. E21b; Helmchen, G., Ed.; Thieme: Stuttgart, 1995; p 1314. d)
Knochel, P. Synlett 1995, 393. Using catalysts with
diarylhydroxymethyl pattern: e) Soai, K.; Ookawa, A.; Kaba, T.;
Ogawa, K. J. Am. Chem. Soc. 1987, 109, 7111. f) Corey, E. J.;
Yuen, P.-W.; Hannon, F. J.; Wierda, D. A. J. Org. Chem. 1990, 55,
784. g) Seebach, D.; Plattner, D. A.; Beck, A. K.; Wang, Y. M.;
Hunziker, D. Helv. Chim. Acta 1992, 75, 2171. h) Bolm, C.;
Fernandez, K. M.; Seger, A.; Raabe, G. Synlett 1997, 1051.
Acknowledgment: This work was supported by the Fonds der
Chemischen Industrie. Grants to R. F. were provided by the
Graduiertenförderung and the Dr. Jost-Henkel-Stiftung.
References and Notes
(1) Braun, M. Angew. Chem. 1996, 108, 565; Angew. Chem., Int. Ed.
Engl. 1996, 35, 519.