10.1002/anie.202011267
Angewandte Chemie International Edition
RESEARCH ARTICLE
Keywords: nitrone • indolylmethanol • cooperative catalysis •
organocatalysis • enantioselectivity • cycloaddition
[1] For some recent reviews: a) L. L. Anderson, Asian J. Org. Chem. 2016, 5,
9; b) L. L. Anderson, M. A. Kroc, T. W. Reidl, J. Son, J. Org. Chem. 2016,
81, 9521; c) D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Synth. Catal. 2016,
358, 1348; d) P. Merino, T. Tejero, I. Delso, R. Matute, Org. Biomol. Chem.
2017, 15, 3364; e) S.-I. Murahashi, Y. Imada, Chem. Rev. 2019, 119, 4684.
[2] For a review: T. Hashimoto, K. Maruoka, Chem. Rev. 2015, 115, 5366.
[3] For early examples on metal-catalyzed asymmetric (3+2) cycloadditions of
nitrones: a) K. V. Gothelf, K. A. Jørgensen, J. Org. Chem. 1994, 59, 5687;
b) J.-P. G. Seerden, A. W. A. Scholte op Reimer, H. W. Scheeren,
Tetrahedron Lett. 1994, 35, 4419; c) K. Hori, H. Kodama, T. Ohta, I.
Furukawa, Tetrahedron Lett. 1996, 37, 5947; d) S. Kobayashi, M.
Kawamura, J. Am. Chem. Soc. 1998, 120, 5840; e) S. Kanemasa, Y.
Oderaotoshi, J. Tanaka, E. Wada, J. Am. Chem. Soc. 1998, 120, 12355; f)
K. B. Simonsen, P. Bayꢀn, R. G. Hazell, K. V. Gothelf, K. A. Jørgensen, J.
Am. Chem. Soc. 1999, 121, 3845.
[4] For early examples on chiral amine-catalyzed asymmetric (3+2)
cycloadditions of nitrones: a) W. S. Jen, J. J. M. Wiener, D. W. C. MacMillan,
J. Am. Chem. Soc. 2000, 122, 9874; b) S. Karlsson, H.-E. Hꢁgberg, Eur. J.
Org. Chem. 2003, 2782; c) A. Puglisi, M. Benaglia, M. Cinquini, F. Cozzi, G.
Celentano, Eur. J. Org. Chem. 2004, 567.
Figure 1. Comparison between TS-1 and TS-1’ of the two pathways
[5] For examples on chiral thiourea-catalyzed asymmetric (3+2) cycloadditions
of nitrones: a) A. Wittkopp, P. R. Schreiner, Chem. Eur. J. 2003, 9, 407; b)
W. Du, Y. K. Liu, L. Yue, Y. C. Chen, Synlett 2008, 2997.
Finally, considering the importance of the constructed
oxacarboline scaffold in chemical biology,[23] we investigated the
possible bioactivity of the oxacarboline products 3. The in vitro
cytotoxicities of some selected products 3 against the human
prostatic carcinoma PC-3 cell line were evaluated. The tested
products 3 exhibited moderate to strong cytotoxicity against the
PC-3 cell line, and the IC50 values ranged from 40.08 to 222.65
μg/mL (see the SI for details). Therefore, these results of the
cytotoxic evaluation demonstrated the importance of this class of
oxacarboline products 3, which exhibited moderate to strong
anticancer activity against the PC-3 cell line and are promising
compounds for discovering more applications in medicinal
chemistry.
[6] For examples on chiral Bronsted acid-catalyzed asymmetric (3+2)
cycloadditions of nitrones: a) P. Jiao, D. Nakashima, H. Yamamoto, Angew.
Chem. Int. Ed. 2008, 47, 2411; Angew. Chem. 2008, 120, 2445; b) Y. Jin, Y.
Honma, H. Morita, M. Miyagawa, T. Akiyama, Synlett 2019, 30, 1541.
[7] For recent reviews: a) X. Xu, M. P. Doyle, Acc. Chem. Res. 2014, 47, 1396;
b) Y. Deng, Q.-Q. Cheng, M. P. Doyle, Synlett 2017, 28, 1695.
[8] For catalytic asymmetric (3+3) cycloadditions of nitrones: a) M. P. Sibi, Z.
Ma, C. P. Jasperse, J. Am. Chem. Soc. 2005, 127, 5764; b) Y.-B. Kang, X.-
L. Sun, Y. Tang, Angew. Chem. Int. Ed. 2007, 46, 3918; Angew. Chem.
2007, 119, 3992; c) R. Shintani, S. Park, W.-L. Duan, T. Hayashi, Angew.
Chem. Int. Ed. 2007, 46, 5901; Angew. Chem. 2007, 119, 6005; d) F. Liu, D.
Qian, L. Li, X. Zhao, J. Zhang, Angew. Chem. Int. Ed. 2010, 49, 6669;
Angew. Chem. 2010, 122, 6819; e) X. Wang, X. Xu, P. Y. Zavalij, M. P.
Doyle, J. Am. Chem. Soc. 2011, 133, 16402; f) X. Xu, P. J. Zavalij, M. P.
Doyle, Chem. Commun. 2013, 49, 10287; g) M. Chen, Z.-M. Zhang, Z. Yu,
H. Qiu, B. Ma, H.-H. Wu, J. Zhang, ACS Catal. 2015, 5, 7488; h) Q.-Q.
Cheng, J. Yedoyan, H. Arman, M. P. Doyle, J. Am. Chem. Soc. 2016, 138,
44; i) P.-W. Xu, J.-K. Liu, L. Shen, Z.-Y. Cao, X.-L. Zhao, J. Yan, J. Zhou,
Nat. Commun. 2017, 8, 1619; j) K. O. Marichev, F. G. Adly, A. M. Carranco,
E. C. Garcia, H. Arman, M. P. Doyle, ACS Catal. 2018, 8, 10392; k) F. G.
Adly, K. O. Marichev, J. A. Jensen, H. Arman, M. P. Doyle, Org. Lett. 2019,
21, 40; l) L. Zhou, B. Xu, D. Ji, Z.-M. Zhang, J. Zhang, Chin. J. Chem. 2020,
38, 577.
Conclusion
In summary, we have established the regio- and
enantioselective (3+3) cycloaddition of nitrones with 2-
indolylmethanols enabled by the cooperative organocatalysis of
HFIP and CPA. Using this approach, a series of indole-fused
six-membered heterocycles were synthesized in high yields with
excellent enantioselectivities and exclusive regiospecificity. This
design realized not only the first organocatalytic asymmetric
(3+3) cycloaddition of nitrones but also the first C3-nucleophilic
asymmetric (3+3) cycloaddition of 2-indolylmethanols. More
importantly, theoretical calculations elucidated the role of the
cocatalyst HFIP in helping CPA stabilize the key transition state
and create a chiral environment, thus controlling the reactivity
and enantioselectivity. This study not only enriches the
chemistry of nitrones and 2-indolylmethanols but also advances
the research field of cooperative asymmetric catalysis.
[9] For catalytic asymmetric (3+4) cycloadditions of nitrones: a) J.-L. Hu, L.
Wang, H. Xu, Z. Xie, Y. Tang, Org. Lett. 2015, 17, 2680; b) Y. Zhang, J.
Zhang, Chem. Commun. 2012, 48, 4710.
[10] For a sole example using in situ generated nitrones: Y. Liu, J. Ao, S.
Paladhi, C. E. Song, H. Yan, J. Am. Chem. Soc. 2016, 138, 16486.
[11] For recent reviews: a) G.-J. Mei, F. Shi, J. Org. Chem. 2017, 82, 7695; b)
Y.-C. Zhang, F. Jiang, F. Shi, Acc. Chem. Res. 2020, 53, 425; c) M. Petrini,
Adv. Synth. Catal. 2020, 362, 1214.
[12] For selected examples on catalytic asymmetric reactions of
indolylmethanols from other groups: a) Q.-X. Guo, Y.-G. Peng, J.-W. Zhang,
L. Song, Z. Feng, L.-Z. Gong, Org. Lett. 2009, 11, 4620; b) F.-L. Sun, M.
Zeng, Q. Gu, S.-L. You, Chem. Eur. J. 2009, 15, 8709; c) C. Guo, J. Song,
J.-Z. Huang, P.-H. Chen, S.-W. Luo, L.-Z. Gong, Angew. Chem. Int. Ed.
2012, 51, 1046; Angew. Chem. 2012, 124, 1070; d) J. Song, C. Guo, A.
Adele, H. Yin, L.-Z. Gong, Chem. Eur. J. 2013, 19, 3319; e) S. Qi, C.-Y. Liu,
J.-Y. Ding, F.-S. Han, Chem. Commun. 2014, 50, 8605; f) K. Bera, C.
Schneider, Org. Lett. 2016, 18, 5660; g) K. Bera, C. Schneider, Chem. Eur.
J. 2016, 22, 7074; h) I. Kallweit, C. Schneider, Org. Lett. 2019, 21, 519; i) X.
Acknowledgements
This work was supported by NSFC (21772069 and 21831007)
and Natural Science Foundation of Jiangsu Province. We are
grateful for Prof. Shu Zhang for her help in biological evaluation.
8
This article is protected by copyright. All rights reserved.