C O M M U N I C A T I O N S
depicted in Table 1, aromatic aldehydes tend to be effective
substrates with B2(pin)2 and trans-piperylene (Table 1, entries 1-5).
With the more encumbered 3-methylpentadiene (entries 6, 7) a
versatile trisubstituted alkene was furnished; within the limits of
detection, this product was obtained as a single stereoisomer with
respect to the stereocenters and the alkene. With butadiene (entry
8) reaction yields suffered, even with further optimization of
reaction conditions. In contrast to butadiene, isoprene (entry 9)
reacted with comparable efficiency as compared to 1,3-pentadiene
Supporting Information Available: Characterization and proce-
dures. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Marder, T. B.; Norman, N. C. Top. Catal. 1998, 5, 63. (b) Ishiyama,
T.; Miyaura, N. J. Organomet. Chem. 2000, 611, 392. (c) Ishiyama, T.;
Miyaura, N. Chem. Rec. 2004, 3, 271. (d) Beletskaya, I.; Moberg, C. Chem.
ReV. 2006, 106, 2320. (e) Burks, H. E.; Morken, J. P. Chem. Commun.
2007, 4717. (f) Ramirez, J.; Lillo, V.; Segarra, A. M.; Fernandez, E. Comp.
Rend. Chim. 2007, 10, 138.
1
and furnished a single alkene stereoisomer as determined by H
(2) (a) Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott, S. A. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 1336. (b) Ishiyama, T.; Yamamoto, M.; Miyaura,
N. Chem. Commun. 1997, 689. (c) Iverson, C. N.; Smith III, M. R.
Organometallics 1997, 16, 2757. (d) Dai, C.; Robins, E. G.; Scott, A. J.;
Clegg, W.; Yufit, D. S.; Howard, J. A. K.; Marder, T. B. Chem. Commun.
1998, 1983. (e) Nguyen, P.; Coapes, R. B.; Woodward, A. D.; Taylor, N. J.;
Burke, J. M.; Howard, J. A. K.; Marder, T. B. J. Organomet. Chem. 2002,
652, 77. (f) Morgan, J. B.; Miller, S. P.; Morken, J. P. J. Am. Chem. Soc.
2003, 125, 8702. (g) Trudeau, S.; Morgan, J. B.; Shrestha, M.; Morken,
J. P. J. Org. Chem. 2005, 70, 9538. (h) Ramirez, J.; Segarra, A. M.;
Ferandez, E. Tetrahedron: Asymmetry 2005, 16, 1289. (i) Ram´ırez, J.;
Corbera´n, R.; Sanau´, M.; Peris, E.; Fernandez, E. Chem. Commun. 2005,
3056. (j) Lillo, V.; Mata, J.; Ramirez, J.; Peris, E.; Fernandez, E.
Organometallics 2006, 25, 5829. (k) Lillo, V.; Mas-Marza´, E.; Segarra,
A. M.; Carbo´, J. J.; Bo, C.; Peris, E.; Fernandez, E. Chem. Commun. 2007,
3380.
(3) (a) Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem. Commun. 1996, 2073.
(b) Clegg, W.; Thorsten, J.; Marder, T. B.; Norman, N. C.; Orpen, A. G.;
Peakman, T. M.; Quayle, M. J.; Rice, C. R.; Scott, A. J. J. Chem. Soc.,
Dalton Trans. 1998, 1431. (c) Morgan, J. B.; Morken, J. P. Org. Lett. 2003,
5, 2573.
(4) (a) Ishiyama, T.; Kitano, T.; Miyaura, N. Tetrahedron Lett. 1998, 39, 2357.
(b) Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761. (c) Pelz,
N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken, J. P. J. Am.
Chem. Soc. 2004, 126, 16328. (d) Burks, H. E.; Liu, S.; Morken, J. P.
J. Am. Chem. Soc. 2007, 129, 8766.
(5) (a) Lawson, Y. G.; Lesley, M. J. G.; Norman, N. C.; Rice, C. R.; Marder,
T. B. Chem. Commun. 1997, 2051. (b) Takahashi, K.; Ishiyama, T.;
Miyaura, N. Chem. Lett. 2000, 982. (c) Ito, H.; Yamanaka, H.; Tateiwa,
J.; Hosomi, A. Tetrahedron Lett. 2000, 47, 6821. (d) Takahashi, K.;
Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2001, 625, 47. (e) Kabalka,
G. W.; Das, B. C.; Das, S. Tetrahedron Lett. 2002, 43, 2323. (f) Bell,
N. J.; Cox, A. J.; Cameron, N. R.; Evans, J. S. O.; Marder, T. B.; Duin,
M. A.; Elsevier, C. J.; Baucherel, X.; Tulloch, A. A. D.; Tooze, R. P. Chem.
Commun. 2004, 1854. (g) Ito, H.; Kawakami, C.; Sawamura, M. J. Am.
Chem. Soc. 2005, 127, 16034. (h) Mun, S.; Lee, J. -E.; Yun, J. Org. Lett.
2006, 8, 4887. (i) Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007,
9, 5031.
(6) Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1997, 16, 1355.
(7) Reviews: (a) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (b)
Kimura, M.; Tamaru, Y. Top. Curr. Chem. 2007, 279, 173. (c) Ngai, M.-
Y.; Kong, J.-R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063. (d) Moslin,
R. M.; Miller-Moslin, K.; Jamison, T. F. Chem. Commun. 2007, 4441.
(8) Wilke, G. Angew. Chem., Int. Ed. Engl. 1988, 27, 185.
NMR analysis of the oxidation product. With this substrate, the
use of P(OEt)3 as the ligand was criticalswith PCy3, significant
amounts of a double allylation product, incorporating 2 equiv of
the aldehyde, were obtained. Entries 10 and 11 document that the
reaction is not necessarily limited to aromatic aldehydes; both
saturated and R,ꢀ-unsaturated aldehydes engaged in the reaction,
although yields were diminished with these substrates (entries 10,
11). Lastly, entry 12 shows that with cis-1,3-pentadiene the same
stereoisomer was favored as when the trans diene was employed
(cf. entry 1). Here, it merits mention that when the cis diene was
subjected to the catalyst, in the absence of the other reactants, rapid
cis/trans isomerization resulted (data not shown). Thus, it is
plausible that diene isomerization occurred during the course of
the reaction, and the trans alkene was more rapidly incorporated
into the product.
To probe features of the mechanism that might be important for
further reaction design, exploratory experiments were carried out.
When trans-1,3-pentadiene and B2(pin)2 were allowed to react with
the catalyst for 48 h, prior to the addition of benzaldehyde, addition
product 1 was obtained (eq 3; with 6 h reaction time for the first
step, a mixture of 1 and 2 resulted). This addition product is
regioisomeric with respect to the products in Table 1 and appears
most likely to result from sequential Ni-catalyzed 1,4 diene
diboration to give 3, followed by selective aldehyde allylation (see
eq 3). This conjecture was supported by the outcome in eq 4.14
The fact that the three-component reaction in Table 1 takes a
different course than the process in eq 3 suggests that a sequential
diene diboration followed by aldehyde allylation does not operate
in Table 1; a more likely mechanism is related to that in eq 2.
(9) (a) Sato, Y.; Takimoto, M.; Hayashi, K.; Katsuhara, T.; Takagi, K.; Mori,
M. J. Am. Chem. Soc. 1994, 116, 9771. (b) Sato, Y.; Takimoto, M.; Mori,
M. Tetrahedron Lett. 1996, 37, 887. (c) Takimoto, M.; Hiraga, Y.; Sato,
Y.; Mori, M. Tetrahedron Lett. 1998, 39, 4543. (d) Sato, Y.; Takanashi,
T.; Hoshiba, M.; Mori, M. Tetrahedron Lett. 1998, 39, 5579. (e) Sato, Y.;
Saito, N.; Mori, M. Tetrahedron 1998, 54, 1153. (f) Sato, Y.; Takimoto,
M.; Mori, M. J. Am. Chem. Soc. 2000, 122, 1624. (g) Sato, Y.; Saito, N.;
Mori, M. J. Am. Chem. Soc. 2000, 122, 2371. (h) Sato, Y.; Sawaki, R.;
Mori, M. Organometallics 2001, 27, 5510. (i) Sato, Y.; Saito, N.; Mori,
M. J. Org. Chem. 2002, 67, 9310. (j) Sato, Y.; Sawaki, R.; Saito, N.; Mori,
M. J. Org. Chem. 2002, 73, 656.
(10) (a) Kimura, M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am. Chem. Soc. 1998,
120, 4033. (b) Kimura, M.; Fujimatsu, H.; Ezoe, A.; Shibata, K.; Shimizu,
M.; Matsumoto, S.; Tamaru, Y. Angew. Chem., Int. Ed. 1999, 38, 397. (c)
Shibata, K.; Kimura, M.; Shimizu, M.; Tamaru, Y. Org. Lett. 2001, 3, 2181.
(d) Kimura, M.; Ezoe, A.; Mori, M.; Iwata, K.; Tamaru, Y. J. Am. Chem.
Soc. 2006, 128, 8559.
(11) For aligned work involving the coupling of dienes and carbonyls under Ir
and Ru catalysis, see: (a) Bower, J. F.; Patman, R. L.; Krische, M. J. Org.
Lett. 2008, 10, 1033. (b) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am.
Chem. Soc. 2008, 130, 6338.
In conclusion, we have demonstrated that diboron reagents can
be used to facilitate stereoselective intermolecular coupling of dienes
and aldehydes. The reaction products are particularly well suited
for the construction of polyketide natural products and other useful
chiral materials. Studies in asymmetric catalysis and in alternate
transformations of the allyl boron product are underway.
(12) For intermolecular coupling of dienes, aldehydes, and silylstannanes, see:
(a) Sato, Y.; Saito, N.; Mori, M. Chem. Lett. 2002, 18. For a related process
with dienes, aldehydes, and diborons: (b) Morgan, J. B.; Morken, J. P.
Org. Lett. 2003, 5, 2573. For intramolecular couplings, see: (c) Yu, C.-M.;
Youn, J.; Yoon, S.-K.; Hong, Y.-T. Org. Lett. 2005, 7, 4507. (d) Ballard,
C. E.; Morken, J. P. Synthesis 2004, 9, 1321.
(13) Ogoshi, S.; Tonomori, K.; Oka, M.; Kurosawa, H. J. Am. Chem. Soc. 2006,
128, 7077.
(14) For Ni-catalyzed silylboration of dienes, see: (a) Suginome, M.; Matsuda,
T.; Yoshimoto, T.; Ito, T. Org. Lett. 1999, 1, 1567. (b) Gerdin, M.; Moberg,
C. AdV. Synth. Catal. 2005, 347, 749.
Acknowledgment. Support by the NIGMS (Grant GM-59417)
and Merck is gratefully acknowledged, as is the NSF for support
of the BC Mass Spectrometry Center (Grant DBI-0619576).
JA806113V
9
J. AM. CHEM. SOC. VOL. 130, NO. 48, 2008 16141