OLEDs. In this study, the embodiment of full color fluorescence
was achieved through the modification of quinoxalines using
existing synthetic protocol and the electrophilic nature of the
pyrazine ring. In addition, subsequent color control to a mostly
“green” luminescence was demonstrated. A synthetic strategy
for the production of highly fluorescent materials based on
quinoxalines involves the introduction of electron donor (ED)
substituents at the periphery of an electron-deficient quinoxaline
core. New types of bipolar quinoxalines were produced by
combining with an electron-withdrawing (EW) pyrazine core
to yield panchromatic fluorescence depending on the electron
donating capability of the ArX or X substituent. Further
electronic control is expected by derivatization on this unit due
to the highly polarized nature of the imine unit of the pyrazine
ring.7
Fluorescence Control on Panchromatic Spectra
via C-Alkylation on Arylated Quinoxalines
Ho-Jin Son, Won-Sik Han, Dae-Hwan Yoo,
Kyoung-Tae Min, Soon-Nam Kwon, Jaejung Ko,* and
Sang Ook Kang*
Department of Materials Chemistry, Sejong Campus, Korea
UniVersity, Chung-Nam 339-700, South Korea
ReceiVed February 3, 2009
In this study, unique C-alkylation on various types of
quinoxaline derivatives, 2, consolidated their electronic struc-
tures to produce green fluorescence. Therefore, in an effort to
gain further insight into the unique electronic control by
C-alkylation, quinoxaline derivatives (2) with a full color range
of 400-641 nm were prepared by 2,3-/5,8-ArylX or X substitu-
tion (X ) -H, -OMe, -NPh2, -NMe2, -NMePh). As
expected, C-alkylation on the quinoxaline precursors with
n-butyllithium resulted in a coherent fluorescence at ap-
proximately 550 nm in all 2-butylated products (3). This paper
reports full details of the synthesis and characterization of
various 2-butylated quinoxaline compounds (3). Ultraviolet/
visible and photoluminescence spectroscopy were used to
characterize corresponding photoluminescence properties, and
the direct band gaps were measured by cyclic voltammetry.
Theoretical calculations were also carried out to account for
the change in the electronic structures arising from the 2-bu-
tylation of quinoxaline derivatives. Using a literature protocol,8
5,8-dibromoquinoxaline (1) was prepared in moderate yield from
3,6-dibromobenzene-1,2-diamines and benzils. Schemes 1 and
A coherent green fluorescence was obtained by butylation
at the 2-position of panchromatic 2,3-diaryl-5,8-diarylqui-
noxalines (2) to give corresponding 2-butyl-2,3-diaryl-5,8-
diaryl-1H-quinoxalines (3). Full color quinoxaline derivatives
(2) were prepared from electronic modification at either the
2,3- or 5,8-positions at the peripheral ArX group or X group
(X ) -H, -OMe, -NPh2, -NMe2, -NMePh) of the
quinoxalines. 2-Butylation converted one imine unit of the
pyrazine ring to an amine group, which effectively altered
the electron donor and acceptor functions to produce a
coherent green fluorescence.
(4) (a) Thomas, K. R. J.; Lin, J. T.; Tao, Y.-T.; Chuen, C. H. J. Mater. Chem.
2002, 12, 3516. (b) Chen, C.-T.; Lin, J.-S.; Moturn, M. V. R. K.; Lin, Y.-W.;
Yi, W.; Tao, Y.-T.; Chien, C.-H. Chem. Commun. 2005, 3980. (c) Thomas,
K. R. J.; Velusamy, M.; Lin, J. T.; Chuen, C.-H.; Tao, Y.-T. Chem. Mater. 2005,
17, 1860. (d) Aldakov, D.; Palacios, M. A.; Anzenbacher, P., Jr. Chem. Mater.
2005, 17, 5238. (e) Chen, C.-T.; Wei, Y.; Lin, J.-S.; Motoru, M. V. R. K.; Chao,
W.-S.; Tao, Y.-T.; Chien, C.-H. J. Am. Chem. Soc. 2006, 128, 10992.
(5) (a) Kulkarni, A. P.; Zhu, Y.; Babel, A.; Wu, P.-T.; Jenekhe, S. A. Chem.
Mater. 2008, 20, 4212. (b) Xu, X.; Yu, G.; Chen, S.; Di, C.; Liu, Y. J. Mater.
Chem. 2008, 18, 299. (c) Chen, S.; Xu, X.; Liu, Y.; Qiu, W.; Yu, G.; Wang, H.;
Zhu, D. J. Phys. Chem. C 2007, 111, 1029. (d) Chen, S.; Xu, X.; Liu, Y.; Yu,
G.; Sun, X.; Qiu, W.; Ma, Y.; Zhu, D. AdV. Funct. Mater. 2005, 15, 1541. (e)
Kulkarni, A. P.; Zhu, Y.; Jenekhe, S. A. Macromolecules 2005, 38, 1553. (f)
Zhao, L.; Perepichka, I. F.; Tu¨rksoy, F.; Batsanov, A. S.; Beeby, A.; Findlay,
K. S.; Bryce, M. R. New J. Chem. 2004, 28, 912. (g) Thomas, K. R. J.; Lin,
J. T.; Tao, Y.-T.; Chuen, C.-H. Chem. Mater. 2002, 14, 2796.
(6) (a) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater.
2004, 16, 4556. (b) Schmitz, C.; Po¨sch, P.; Thelakkat, M.; Schmidt, H.-W.;
Montali, A.; Feldman, K.; Smith, P.; Weder, C. AdV. Funct. Mater. 2001, 11,
41. (c) Cui, Y.; Zhang, X.; Jenekhe, S. A. Macromolecules 1999, 32, 3824. (d)
Redecker, M.; Bradley, D. C. C.; Jandke, M.; Strohriegl, P. Appl. Phys. Lett.
1999, 75, 109. (e) Jandke, M.; Strohriegl, P.; Berleb, S.; Werner, E.; Bru¨tting,
W. Macromolecules 1998, 31, 6434. (f) Fukuda, T.; Kanbara, T.; Yamamoto,
T.; Ishikawa, K.; Takezoe, H.; Fukuda, A. Appl. Phys. Lett. 1996, 68, 2346. (g)
O’Brien, D.; Weaver, M. S.; Lidzey, D. G.; Bradley, D. D. C. Appl. Phys. Lett.
1996, 69, 881.
Color control and high luminescence efficiency are funda-
mental issues in the development of full-color emitting materials
for OLEDs. Several conditions are essential for the development
of new types of highly luminescent materials. These include
easy preparation, facile derivatization, photochemical and
thermal stability, and, most of all, color purity and high quantum
efficiency.1,2 Quinoxaline derivatives, which are known as
“benzopyrazine”, have a synthetic advantage over other fused
aromatic systems due to the existence of a high-yield synthetic
route from diketone and diamine condensation.3 In addition,
the introduction of internal diimine units to the aromatic ring
system allows electronic alterations to impart highly electrophilic
characteristics to the ring.4 As a consequence, benzopyrazines
are finding increasing use in light-emitting5 and electron-
transporting6 materials for the manufacture of highly efficient
(1) (a) Li, Z.; Meng, H. Organic Light-Emitting Materials and DeVices; CRC
Press: Boca Raton, FL, 2007. (b) Shirota, Y.; Kageyama, H. Chem. ReV. 2007,
107, 953.
(2) (a) Forrest, S. R.; Thompson, M. E. Chem. ReV. 2007, 107, 923. (b) Kafafi,
Z. H. Organic Electroluminescence; Taylor & Francis: Boca Raton, FL, 2005.
(3) (a) Mao, L.; Sakurai, H.; Hirao, T. Synthesis 2004, 2535. (b) Eicher, T.;
Hauptmann, S. The Chemistry of Heterocycles; Thieme: New York, 1995; pp
417-422 and 434.
(7) Son, H.-J.; Han, W.-S.; Wee, K.-R.; Yoo, D.-H.; Lee, J.-H.; Kwon, S.-
N.; Ko, J.; Kang, S. O. Org. Lett. 2008, 10, 5401.
(8) Mancilha, F. S.; Neto, B. A. D.; Lopes, A. S.; Moreira, P. F., Jr.; Quina,
F. H.; Gonc¸alves, R. S.; Dupont, J. Eur. J. Org. Chem. 2006, 4924.
10.1021/jo9002147 CCC: $40.75
Published on Web 03/23/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 3175–3178 3175