or side chains,8,9 thus forming unequal ratio of two diaster-
eomeric helices.
Scheme 1. Synthesis of Oligoindole 8a
We have previously described oligoindoles capable of
folding into a helical conformation upon binding a chloride
ion via hydrogen bonding.10 The oligoindoles fold to give a
racemic mixture of two enatiomeric helices, the left- and
right-handed. In order to induce the helical bias, we prepared
chiral oligoindoles 8a and its enantiomer 8b, comprising a
tetraindole backbone with (1S)- or (1R)-phenylethylamido
1
units at both ends. H NMR and circular dichroism (CD)
spectroscopy clearly support the hypothesis that 8a and 8b
adopt a helical structure upon binding an anion such as
chloride by multiple hydrogen bonds. In particular, 8a or
8b alone exhibits almost no CD signal but the addition of
an anion induces a strong Cotton effect, implying the
preferential formation of one particular helix over another.
(4) (a) Abe, H.; Machiguchi, H.; Matsumoto, S.; Inouye, M. J. Org.
Chem. 2008, 73, 4650–4661. (b) Waki, M.; Abe, H.; Inouye, M. Angew.
Chem., Int. Ed. 2007, 46, 3059–3061. (c) Waki, M.; Abe, H.; Inouye, M.
Chem. Eur. J. 2006, 12, 7839–7847. (d) Abe, H.; Masuda, N.; Waki, M.;
Inouye, M. J. Am. Chem. Soc. 2005, 127, 16189–16196. (e) Inouye, M.;
Waki, M.; Abe, H. J. Am. Chem. Soc. 2004, 126, 2022–2027. (f) Yi, H.-P.;
Shao, X.-B.; Hou, J.-L.; Li, C.; Jiang, X.-K.; Li, Z.-T. New J. Chem. 2005,
29, 1213–1218. (g) Li, C.; Ren, S.-F.; Hou, J.-L.; Yi, H.-P.; Zhu, S.-Z.;
Jiang, X.-K.; Li, Z.-T. Angew. Chem., Int. Ed. 2005, 44, 5725–5729. (h)
Hou, J.-L.; Shao, X.-B.; Chen, G.-J.; Zhou, Y.-X.; Jiang, X.-K.; Li, Z.-T.
J. Am. Chem. Soc. 2004, 126, 12386–12394.
(5) (a) Hu, H.-Y.; Xiang, J.-F.; Yang, Y.; Chen, C.-F. Org. Lett. 2008,
10, 69–72. (b) Baruah, P. K.; Gonnade, R.; Rajamohanan, P. R.; Hofmann,
H.-J.; Sanjayan, G. J. J. Org. Chem. 2007, 72, 5077–5084. (c) Zhong, Z.;
Zhao, Y. Org. Lett. 2007, 9, 2891–2894. (d) Dong, Z.; Yap, G. P. A.; Fox,
J. M. J. Am. Chem. Soc. 2007, 129, 11850–11853. (e) Sugiura, H.;
Nigorikawa, Y.; Saiki, Y.; Nakamura, K.; Yamaguchi, M. J. Am. Chem.
Soc. 2004, 126, 14858–14864. (f) Zhao, X.; Jia, M.-X.; Jiang, X.-K.; Wu,
L.-Z.; Li, Z.-T.; Chen, G.-J. J. Org. Chem. 2004, 69, 270–279. (g) Hill,
D. J.; Moore, J. S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5053–5057. (h)
Gin, M. S.; Moore, J. S. Org. Lett. 2000, 2, 135–138. (i) Gin, M. S.;
Yokozawa, T.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 1999, 121,
2643–2644.
The synthesis of chiral oligoindole 8a bearing the (S,S)-
configuration at the benzylic positions of both ends is
outlined in Scheme 1. Coupling of 3-bromobenzoyl chloride
(1) with (1S)-phenylethylamine (2) gave 3 in 92% yield.
Then, Pd(0)/CuI-catalyzed reaction11 of 3 with trimethylsi-
lyl(TMS)-ethyne, followed by removal of the TMS group
under the basic conditions, gave 4 in 81% yield (two steps).
Coupling of 4 with 5 (1.5 equiv) afforded 6 in 60% yield,
part of which was in turn converted into 7. Finally, 6 and 7
were combined to provide a chiral oligoindole 8a in 66%
yield.
(6) (a) Hu, H.-Y.; Xiang, J.-F.; Yang, Y.; Chen, C.-F. Org. Lett. 2008,
10, 1275–1278. (b) Gillies, E. R.; Deiss, F.; Staedel, C.; Schmitter, J. M.;
Huc, I. Angew. Chem., Int. Ed. 2007, 46, 4081–4084. (c) Buffeteau, T.;
Ducasse, L.; Poniman, L.; Delsuc, N.; Huc, I. Chem. Commun. 2006, 2714–
2716. (d) Dolain, C.; Jiang, H.; Leger, J.-M.; Guionneau, P.; Huc, I. J. Am.
Chem. Soc. 2005, 127, 12943–12951. (e) Maurizot, V.; Dolain, C.; Huc, I.
Eur. J. Org. Chem. 2005, 1293–1301. (f) Jiang, H.; Dolain, C.; Leger, J.-
M.; Gornitzka, H.; Huc, I. J. Am. Chem. Soc. 2004, 126, 1034–1035. (g)
Dolain, C.; Maurizot, V.; Huc, I. Angew. Chem., Int. Ed. 2003, 42, 2738–
2740.
(7) (a) King, E. D.; Tao, P.; Sanan, T. T.; Hadad, C. M.; Parquette,
J. R. Org. Lett. 2008, 10, 1671–1674. (b) Li, C.; Wang, G.-T.; Yi, H.-P.;
Jiang, X.-K.; Li, Z.-T.; Wang, R.-X. Org. Lett. 2007, 9, 1797–1800. (c)
Dong, Z.; Karpowicz, R. J., Jr.; Bai, S.; Yap, G. P. A.; Fox, J. M. J. Am.
Chem. Soc. 2006, 128, 14242–14243. (d) Goto, H.; Heemstra, J. M.; Hill,
D. J.; Moore, J. S. Org. Lett. 2004, 6, 889–892. (e) Cary, J. M.; Moore,
J. S. Org. Lett. 2002, 4, 4663–4666. (f) Moriuchi, T.; Nishiyama, M.;
Yoshida, K.; Ishikawa, T.; Hirao, T. Org. Lett. 2001, 3, 1459–1461.
(8) (a) Meudtner, R. M.; Hecht, S. Angew. Chem., Int. Ed. 2008, 47,
4926–4930. (b) Khan, A.; Kaiser, C.; Hecht, S. Angew. Chem., Int. Ed.
2006, 45, 1878–1881. (c) Khan, A.; Hecht, S. Chem. Eur. J. 2006, 12, 4764–
4774. (d) Sinkeldam, R. W.; Hoeben, F. J. M.; Pouderoijen, M. J.; Cat,
I. D.; Zhang, J.; Furukawa, S.; Feyter, S. D.; Vekemans, J. A. J. M.; Meijer,
E. W. J. Am. Chem. Soc. 2006, 128, 16113–16121. (e) Prince, R. B.; Moore,
J. S.; Brunsveld, L.; Meijer, E. W. Chem. Eur. J. 2001, 7, 4150–4154. (f)
Brunsveld, L.; Prince, R. B.; Meijer, E. W.; Moore, J. S. Org. Lett. 2000,
2, 1525–1528. (g) Prince, R. B.; Brunsveld, L.; Meijer, E. W.; Moore, J. S.
Angew. Chem., Int. Ed. 2000, 39, 228–230.
The 1H NMR spectrum of 8a was unambiguously assigned
1
by 2D H-1H COSY, TOCSY, and NOESY experiments
1
(see Suppoting Information). The H NMR spectrum of 8a
shows considerable changes in the chemical shift upon
addition of tetrabutylammonium chloride (TBA+Cl-) (Figure
1).12 First, the indole NH signals are largely downfield shifted
from 10.83 and 10.89 ppm to 12.18 and 13.07 ppm as a
result of hydrogen bonding. Second, signals for the amide
NH and the benzoate CHf are also downfield shifted by ∆δ
(11) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 16, 4467–4470. (b) Chinchilla, R.; Na´jera, C. Chem. ReV. 2007, 107,
874–922.
(9) (a) Masu, H.; Sakai, M.; Kishikawa, K.; Yamamoto, M.; Yamaguchi,
K.; Kohmoto, S. J. Org. Chem. 2005, 70, 1423–1431. (b) Zhao, X.; Schanze,
K. S. Langmuir 2006, 22, 4856–4862.
(12) As a result of fast exchange on the 1H NMR (400 MHz) time scale,
time-averaged signals were observed at room temperature between all the
possible conformational isomers of 8a and complex 8a·Cl-. When the
(10) (a) Chang, K.-J.; Kang, B.-N.; Lee, M.-H.; Jeong, K.-S. J. Am.
Chem. Soc. 2005, 127, 12214–12215. (b) Suk, J.-m.; Jeong, K.-S. J. Am.
Chem. Soc. 2008, 130, 11868–11869.
1
temperature was gradually lowered to -40 °C, the H NMR signals were
significantly broadened and not assignable.
5374
Org. Lett., Vol. 10, No. 23, 2008