Inorg. Chem. 2008, 47, 10220-10222
Formation of a Bridging-Imido d6 Rhodium Compound by Nitrene
Capture. Insertion and Cycloaddition Reactions
Cristina Tejel,* Miguel A. Ciriano, Sonia Jime´nez, Vincenzo Passarelli, and Jose´ A. Lo´pez
Instituto de Ciencia de Materiales de Arago´n (ICMA), Departamento de Qu´ımica Inorga´nica,
CSIC-UniVersidad de Zaragoza, E-50009 Zaragoza, Spain
Received September 4, 2008
The first d6 rhodium imido complex, [{(C5Me5)Rh(µ-NSO2C6H4Me-
p)}2] (2), has been obtained from the reaction of [(C5Me5)Rh(C2H4)2]
with chloramine-T. Carbon monoxide inserts into the N-Rh bonds
in 2 to give the dinuclear ureylene complex [(C5Me5)Rh(µ-{(Ts)N-
CO-N(Ts)}Rh(CO)(C5Me5)], while the azide C6F5N3 adds to 2 to
give the mononuclear tetrazene complex [(C5Me5)Rh{(p-MeC6-
H4SO2)N4(C6F5)}].
rhodium has been developed rather more slowly. At present,
just two families of d8-rhodium imido complexes are known,
namely, dinuclear dppm-bridged amido/imido tautomers7 and
polynuclear complexes based on triply bridging “µ3-
NC6H4Me” imido ligands,8 along with an early compound
reported by McGlinchey and Stone,9 and a novel dinuclear
d7-rhodium complex just reported.10 For a long time, d6
rhodium imido compounds have been obstinately elusive,
although evidence for the complex [(C5Me5)RhNR] (R )
2,6-iPr2C6H3) as a transient intermediate species was given
by Danopoulos and Wilkinson.11 Here we report our
preliminary results on the successful synthesis and full
characterization of the first d6 rhodium imido complex and
some exploratory reactions that open this chemistry, inac-
cessible up to now.
Imido complexes of the late transition metals (groups 9
and 10) are rare. Such complexes are of interest as
intermediates in imido group transfer reactions, and they may
play relevant roles in catalytic C-N bond formation reac-
tions.1 This practical and fundamental significance has
encouraged several groups to search for suitable and
reproducible synthetic methods for this class of compounds.
While iridium and ruthenium imides, such as [(C5Me5)-
IrtNtBu]2 and [(η6-benzene)RudNAr] (Ar ) 2,6-iPr2C6H3),3
remained for some time as isolated examples of late-
transition-metal terminal imides, several groups have recently
described imido complexes of the first-row metals cobalt4
and nickel,5 which show an interesting reactivity.6 In marked
contrast, the imido chemistry of the second-row metal
Treatment of the yellow complex [(C5Me5)Rh(C2H4)2] (1)
with chloramine-T (p-MeC6H4SO2NCl-Na+) in dichlo-
(4) (a) Cowley, R. E.; Bontchev, R. P.; Sorrell, J.; Sarracino, O.; Feng,
Y.; Wang, H.; Smith, J. M. J. Am. Chem. Soc. 2007, 129, 2424–2425.
(b) Shay, D. T.; Yap, G. P. A.; Zakharov, L. N.; Rheingold, A. L.;
Theopold, K. H. Angew. Chem., Int. Ed. 2005, 44, 1508–1510. (c)
Hu, X.; Meyer, K. J. Am. Chem. Soc. 2004, 126, 16322–16323. (d)
Dai, X.; Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126,
4798–4799. (e) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003,
125, 10782–10783. (f) Jenkins, D. M.; Betley, T. A.; Peters, J. C.
J. Am. Chem. Soc. 2002, 124, 11238–11239.
(5) (a) Kogut, E.; Wienko, H. L.; Zhang, L.; Cordeau, D. E.; Warren,
T. H. J. Am. Chem. Soc. 2005, 127, 11248–11249. (b) Waterman, R.;
Hillhouse, G. L. J. Am. Chem. Soc. 2003, 125, 13350–13351. (c)
Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2001, 123, 4623–
4624.
* To whom the correspondence should be adressed. E-mail: ctejel@
unizar.es.
(6) Bai, G.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 1856–1859,
and references cited therein.
(1) (a) Badiei, M.; Krishnaswamy, A.; Melzer, M. M.; Warren, T. H.
J. Am. Chem. Soc. 2006, 128, 15056–15057. (b) Eikey, R. A.; Abu-
Omar, M. M. Coord. Chem. ReV. 2003, 243, 83–124. (c) Jensen, M. P.;
Mehn, M. P., Jr. Angew. Chem., Int. Ed. 2003, 42, 4357–4360. (d)
Muller, P.; Fruit, C. Chem. ReV. 2003, 103, 2905–2920. (e) Brandt,
P.; So¨dergren, M. J.; Andersson, P. G.; Norrby, P. O. J. Am. Chem.
Soc. 2000, 122, 8013–8020. (f) Au, S. M.; Huang, J. S.; Yu, W. Y.;
Fung, W. H.; Chi, C. M. J. Am. Chem. Soc. 1999, 121, 9120–9132.
(g) Jacobsen, E. N. In ComprehensiVe Asymmetric Catalysis; Jacobsen,
E. N., Pfaltz, A.,Yamamoto, H., Eds.; Springer: Hamburg, Germany,
1999. (h) DuBois, J. L.; Tomooka, C. S.; Hong, J.; Carreira, E. M.
Acc. Chem. Res. 1997, 30, 364–372.
(7) Sharp, P. R. J. Chem. Soc., Dalton Trans. 2000, 2647–2657.
(8) (a) Tejel, C.; Ciriano, M. A.; Bordonaba, M.; Oro, L. A.; Graiff, C.;
Tirippicchio, A. Chem.sEur. J. 2004, 10, 708–715. (b) Tejel, C.;
Bordonaba, M.; Ciriano, M. A.; Lahoz, F. J.; Oro, L. A. Chem.
Commun. 1999, 2387–2388. (c) Tejel, C.; Shi, Y. M.; Ciriano, M. A.;
Edwards, A. J.; Lahoz, F. J.; Modrego, J.; Oro, L. A. J. Am. Chem.
Soc. 1997, 119, 6678–6679. (d) Tejel, C.; Shi, Y. M.; Ciriano, M. A.;
Edwards, A. J.; Lahoz, F. J.; Oro, L. A. Angew. Chem., Int. Ed. 1996,
35, 1516–1518. (e) Tejel, C.; Shi, Y. M.; Ciriano, M. A.; Edwards,
A. J.; Lahoz, F. J.; Oro, L. A. Angew. Chem., Int. Ed. 1996, 35, 633–
634.
(2) (a) Glueck, D. S.; Wu, J.; Hollander, F. J.; Bergman, R. G. J. Am.
Chem. Soc. 1991, 113, 2041–2054. (b) Glueck, D. S.; Hollander, F. J.;
Bergman, R. G. J. Am. Chem. Soc. 1989, 111, 2719–2721.
(3) (a) Burrell, A. K.; Steedman, A. J. Organometallics 1997, 16, 1203–
1208. (b) Burrell, A. K.; Steedman, A. J. Chem. Commun. 1995, 2109–
2110.
(9) McGlinchey, M. J.; Stone, F. G. A. Chem. Commun. 1970, 1265–
1265.
(10) Takemoto, S.; Otsuki, S.; Hashimoto, Y.; Kamikawa, K.; Matsuzaka,
H. J. Am. Chem. Soc. 2008, 130, 8904–8905.
(11) Danopoulos, A. A.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, B.
J. Chem. Soc., Dalton Trans. 1996, 3771–3778.
10220 Inorganic Chemistry, Vol. 47, No. 22, 2008
10.1021/ic801703d CCC: $40.75 2008 American Chemical Society
Published on Web 10/15/2008