Inorganic Chemistry
COMMUNICATION
the IC50 values for HeLa cells were found to be around 150 μM.
All three europium complexes do not have any specific localiza-
tion profile, and strong two-photon induced fꢀf emissions in the
in vitro emission spectra can be observed (Figure 4). There are
numerous studies on two-/three-photon-induced fꢀf in vitro
imaging with lanthanide materials, but in situ power dependence
experiments are rare. The in situ power dependence experiments
with lanthanide complexes were conducted initially on cells with
complex 3. Only complex 3 showed an impressively high two-
photon absorption cross-section among europium complexes in
the power dependence experiments (Figure 4c). Variations in
laser power were recorded with a power meter for the coherent
(II) laser output from a confocal microscope, and the emission
intensities were monitored after adjusting the laser power for 5
min. Complex 3 demonstrated an in situ power dependence
curve which confirms that the europium signal originated from
within the HeLa cells (Figure 4aiii) was induced by a two-photon
process (slope = ∼2.3) rather than scattering or the SHG of the
laser line. The stability of the three europium complexes in vitro
was examined via titration of various biologically meaningful
small molecules, such as citrate, bicarbonates, and HSA (Figure
S12 and S13, Supporting Information). Slight significant lumi-
nescent enhancement/quenching was observed.
In conclusion, a new motif of triazine-based europium com-
plex 3 has been synthesized, and it demonstrates a strong two-
photon absorption cross-section (320 GM). The dramatic
change of two-photon photophysical properties of these three
europium complexes has been induced by slight modification of
the triazine ligand. Europium complex 3 has demonstrated low
cytotoxicity, cell permeability, and fast cellular uptake without a
specific localization profile, and therefore it has the potential to
become a new time-resolved imaging probe that is excitable at a
wavelength within the “biological window”—in which light
penetration through biological tissue is maximal.
’ REFERENCES
(1) Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.;
Verma, S.; Pogue, B. W.; Hasan, T. Chem. Rev. 2010, 110, 2795–2838.
(2) Koo, C.-K.; So, L. K.-Y.; Wong, K.-L.; Lam, Y.-W.; Lam, M. H.-W.;
Cheah, K.-W. Chem.—Eur. J. 2010, 16, 3942–3949.
(3) Lo, K.-W. K.; Lee, T. K. M.; Lau, J. S.-Y.; Poon, W.-L.; Cheng,
S.-H. Inorg. Chem. 2008, 47, 200–208.
(4) Murphy, L.; Congreve, A.; Palsson, L. O.; Williams, J. A. G.
Chem. Commun. 2010, 146, 8743–8745.
(5) St. Croix, C. M.; Shand, S. H.; Watkins, S. C. Biotechniques 2005,
39, S2–S5.
(6) Montgomery, C. P.; Murray, B. S.; New, E. J.; Pal, R.; Parker, D.
ꢁ
Acc. Chem. Res. 2009, 42, 925–937.
(7) New, E. J.; Smith, D. G.; Parker, D.; Walton, J. W. Curr. Opin.
Chem. Biol. 2010, 14, 238–253.
(8) Eliseeva, S. V.; B€unzli, J. C. G. Chem. Soc. Rev. 2010, 39, 189–227.
ꢁ
(9) Palsson, L.-O.; Pal, R.; Murray, B. S.; David, D.; Beeby, A. Dalton
Trans. 2007, 5726–5734.
(10) Rajapakse, H. E.; Gahlaut, N.; Mohandessi, S.; Yu, D.; Turner,
J. R.; Miller, L. W. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 13582–13587.
(11) He, G.-S.; Tan, L. S.; Zhang, Q.; Prasad, P. N. Chem. Rev. 2008,
128, 1245–1330.
(12) Law, G.-L.; Wong, K.-L.; Man, C. W.-Y.; Wong, W.-T.; Tsao, S.-W.;
Lam, M. H.-W.; Lam, P. K.-S. J. Am. Chem. Soc. 2008, 130, 3714–3715.
(13) Yang, C.; Fu, L.-M.; Wang, Y.; Zhang, J.-P.; Wong, W.-T.; Ai,
X.-C.; Qiao, Y.-F.; Zou, B.-S.; Gui, L.-L. Angew. Chem., Int. Ed. 2004,
43, 5010–5014.
(14) Kadjane, P.; Charbonniꢀere, L.; Camerel, F.; Lainꢁe, P. P.; Ziessel,
R. J. Fluoresc. 2008, 18, 119–129.
(15) Kadjane, P.; Starck, M.; Camerel, F.; Hill, D.; Hildebrandt, N.;
Ziessel, R.; Charbonniꢀere, L. Inorg. Chem. 2009, 48, 4601–4603.
(16) Fu, L.-M.; Wen, X.-F.; Ai, X.-C.; Sun, Y.; Wu, Y.-S.; Zhang, J.-P.;
Wang, Y. Angew. Chem., Int. Ed. 2005, 44, 747–750.
(17) Kielar, F.; Congreve, A.; Law, G.-L.; New, E. J.; Parker, D.;
Wong, K.-L.; Prados, P.; de Mendoza, J. Chem. Commun. 2008,
21, 2435–2437.
(18) D’Alꢁeo, A.; Picot, A.; Baldeck, P. L.; Andraud, C.; Maury, O.
Inorg. Chem. 2008, 47, 10269–10279.
(19) Picot, A.; D’Alꢁeo, A.; Baldeck, P. L.; Grichine, A.; Duperray, A.;
Andraud, C.; Maury, O. J. Am. Chem. Soc. 2008, 130, 1532–1533.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details of synth-
b
eses, photophysical and in vitro studies. 1H and 13C NMR spectra
of ligands and complexes. UVꢀvis absorption and in vitro
emission spectra of complex 3. This material is available free of
’ AUTHOR INFORMATION
Corresponding Author
*Tel: 852 3411 2370 (K.-L.W.), 852 3400 8789 (W.-T.W.).
E-mail: klwong@hkbu.edu.hk (K.-L.W.), bcwtwong@polyu.edu.
hk (W.-T.W.).
Present Addresses
Department of Chemistry, University of California Berkeley,
Berkeley, California, 94720-1460
’ ACKNOWLEDGMENT
This work was funded by grants from The Hong Kong
Research Grants Council (PolyU 503510), the Hong Kong
Polytechnic University (1BD07), City University of Hong Kong,
and Hong Kong Baptist University (FRG 1/10-11/037). This
work was also supported by the Area of Excellence Scheme of the
University of Grants Committee (Hong Kong).
5311
dx.doi.org/10.1021/ic102465j |Inorg. Chem. 2011, 50, 5309–5311