Inorganic Chemistry
Article
9591. (c) Han, M.; Tian, Y.; Yuan, Z.; Zhu, L.; Ma, B. Angew. Chem.,
Int. Ed. 2014, 53, 10908.
(4) (a) Xiang, H.; Zhou, L.; Feng, Y.; Cheng, J.; Wu, D.; Zhou, X.
Inorg. Chem. 2012, 51, 5208. (b) Lin, C. J.; Chen, C. Y.; Kundu, S. K.;
Yang, J. S. Inorg. Chem. 2014, 53, 737. (c) Liu, Y.; Guo, H.; Zhao, J.
Chem. Commun. 2011, 47, 11471.
(5) (a) Zhang, G.; Palmer, G. M.; Dewhirst, M. W.; Fraser, C. L. Nat.
Mater. 2009, 8, 747. (b) Zhang, S.; Hosaka, M.; Yoshihara, T.; Negishi,
K.; Iida, Y.; Tobita, S.; Takeuchi, T. Cancer Res. 2010, 70, 4490.
(c) Zhao, Q.; Zhou, X. B.; Cao, T. Y.; Zhang, K. Y.; Yang, L. J.; Liu, S.
J.; Liang, H.; Yang, H. R.; Li, F. Y.; Huang, W. Chem. Sci. 2015, 6,
1825. (d) Zheng, X.; Wang, X.; Mao, H.; Wu, W.; Liu, B.; Jiang, X.
Nat. Commun. 2015, 6, 5834.
(6) Delor, M.; Keane, T.; Scattergood, P. A.; Sazanovich, I. V.;
Greetham, G. M.; Towrie, M.; Meijer, A. J. H. M.; Weinstein, J. A. Nat.
Chem. 2015, 7, 689.
(7) (a) Wilson, J. S.; Chawdhury, N.; Al-Mandhary, M. R.; Younus,
M.; Khan, M. S.; Raithby, P. R.; Kohler, A.; Friend, R. H. J. Am. Chem.
Soc. 2001, 123, 9412. (b) Liu, Y.; Jiang, S.; Glusac, K.; Powell, D. H.;
Anderson, D. F.; Schanze, K. S. J. Am. Chem. Soc. 2002, 124, 12412.
(8) Chawdhury, N.; Kohler, A.; Friend, R. H.; Wong, W. Y.; Lewis, J.;
Younus, M.; Raithby, P. R.; Corcoran, T. C.; Al-Mandhary, M. R. A.;
Khan, M. S. J. Chem. Phys. 1999, 110, 4963.
In solution, both phosphorescence and fluorescence are
attributed to ligand-based excited states. It is confirmed that
replacing phenyl groups with thiophene rings in metallacycles
can induce or enhance fluorescence without adding extra
conjugation to the ligand, thus obtaining room-temperature
dual emission with different FL/PH ratios. It is also revealed
that adding thiophene rings to extend the conjugation length in
metallacycles (from 1 to 2) will likely shut down phosphor-
escence due to ligand-based low-lying nonemissive T1 states.
DFT and TD-DFT calculations show that upon excitation
from S0 to S1, 2 and 3 undergo charge transfer from the ligand
to the empty 6pz orbital of the Pt atom while 1 shows only
π−π* transitions. It is also revealed that all three metallacycles
show very planar quinoid-like structure in the S1 and T1 excited
state with contracted single bonds and lengthened double/
triple bonds in the ligand. Complex 3 undergoes significant
planarization going from the GS to the S1 or T1 excited states,
resulting in weaker absorbance and much larger energy loss in
vibrational relaxation processes compared to 1 and 2. Both
fluorescence and phosphorescence maxima of these metalla-
cycles are attributed to 0−0 relaxation from corresponding
relaxed S1 and T1 excited states and match up with calculated
values. We anticipate the above findings may be useful for
future applications of these types of complexes in single-
component white-emitting OLEDs, self-referencing oxygen
sensors, and hypoxia contrast agents.
(9) Bradshaw, J. D.; Guo, L.; Tessier, C. A.; Youngs, W. J.
Organometallics 1996, 15, 2582.
(10) Alqaisi, S. M.; Galat, K. J.; Chai, M.; Ray, D. G.; Rinaldi, P. L.;
Tessier, C. A.; Youngs, W. J. J. Am. Chem. Soc. 1998, 120, 12149.
(11) (a) Fan, Y.; Zhao, D. ACS Appl. Mater. Interfaces 2015, 7, 6162.
(b) Hua, F.; Kinayyigit, S.; Cable, J. R.; Castellano, F. N. Inorg. Chem.
2006, 45, 4304. (c) Hua, F.; Kinayyigit, S.; Rachford, A. A.; Shikhova,
E. A.; Goeb, S.; Cable, J. R.; Adams, C. J.; Kirschbaum, K.; Pinkerton,
A. A.; Castellano, F. N. Inorg. Chem. 2007, 46, 8771.
(12) Sonogashira, K.; Yatake, T.; Tohda, Y.; Takahashi, S.; Hagihara,
N. J. Chem. Soc., Chem. Commun. 1977, 291.
(13) Kuchison, A. M.; Wolf, M. O.; Patrick, B. O. Inorg. Chem. 2010,
49, 8802.
(14) Johnson, C. A.; Haley, M. M.; Rather, E.; Han, F.; Weakley, T. J.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Supplementary crystallographic and DFT/TD-DFT data
X-ray crystallographic data for metallacycle 1 (CIF)
X-ray crystallographic data for metallacycle 2 (CIF)
X-ray crystallographic data for metallacycle 3 (CIF)
R. Organometallics 2005, 24, 1161.
(15) (a) Kuchison, A. M.; Wolf, M. O.; Patrick, B. O. Dalton Trans.
2011, 40, 6912. (b) Cao, Y.; Wolf, M. O.; Patrick, B. O. Inorg. Chem.
2013, 52, 5636.
(16) Sheng, C. X.; Singh, S.; Gambetta, A.; Drori, T.; Tong, M.;
Tretiak, S.; Vardeny, Z. V. Sci. Rep. 2013, 3, 2653.
(17) Minaev, B.; Jansson, E.; Lindgren, M. J. Chem. Phys. 2006, 125,
094306.
(18) Boudreault, P.-L. T.; Hennek, J. W.; Loser, S.; Ortiz, R. P.;
Eckstein, B. J.; Facchetti, A.; Marks, T. J. Chem. Mater. 2012, 24, 2929.
(19) Hung, T. Q.; Dang, T. T.; Villinger, A.; Sung, T. V.; Langer, P.
Org. Biomol. Chem. 2012, 10, 9041.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
(20) SAINT, Version 8.34A; Bruker AXS Inc.: Madison, WI, 1997−
ACKNOWLEDGMENTS
We thank the Natural Sciences and Engineering Research
Council of Canada for funding this research.
■
2013.
(21) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. J. Appl.
Crystallogr. 2015, 48, 3.
(22) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71,
3.
REFERENCES
■
(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.;
Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.;
Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.;
Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.
(1) (a) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J.
Appl. Phys. 2001, 90, 5048. (b) Lamansky, S.; Djurovich, P.; Murphy,
D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S.
R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. (c) Sun, Y.;
Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R.
Nature 2006, 440, 908.
(2) (a) Kohler, A.; Beljonne, D. Adv. Funct. Mater. 2004, 14, 11.
̈
(b) Samonina-Kosicka, J.; DeRosa, C. A.; Morris, W. A.; Fan, Z.;
Fraser, C. L. Macromolecules 2014, 47, 3736. (c) Kozhevnikov, D. N.;
Kozhevnikov, V. N.; Shafikov, M. Z.; Prokhorov, A. M.; Bruce, D. W.;
Gareth Williams, J. A. Inorg. Chem. 2011, 50, 3804.
(3) (a) Glazer, E. C.; Magde, D.; Tor, Y. J. Am. Chem. Soc. 2005, 127,
4190. (b) Zhou, C.; Tian, Y.; Yuan, Z.; Han, M.; Wang, J.; Zhu, L.;
Tameh, M. S.; Huang, C.; Ma, B. Angew. Chem., Int. Ed. 2015, 54,
H
Inorg. Chem. XXXX, XXX, XXX−XXX