8980
I. Kim et al. / Tetrahedron Letters 48 (2007) 8976–8981
Grundon, M. F. Nat. Prod. Rep. 1989, 6, 523; (d) Flitsch,
OH
OH
W. In Comprehensive Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Eds.; Pregamon Press: Oxford, 1984;
Vol. 4, p 443; (e) Uchida, T.; Matsumoto, K. Synthesis
1976, 209.
I2, rt
82%
N
N
I
I
4. For recent examples on the synthesis of indolizines, see: (a)
Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.;
Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868; (b)
Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. Org. Lett.
2007, 9, 3433; (c) Chuprakov, S.; Hwang, F. W.; Gevorg-
yan, V. Angew. Chem., Int. Ed. 2007, 46, 4757; (d) El
Kaim, L.; Gizolme, M.; Grimaud, L. Synlett 2007, 227; (e)
Smith, C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R.
Org. Lett. 2007, 9, 1169; (f) Liu, Y.; Hu, H.-Y.; Liu, Q.-J.;
Hu, H.-W.; Xu, J.-H. Tetrahedron 2007, 63, 2024; (g)
H
5
4
OAc
OAc
I2, rt
85%
N
N
I
I
H
6
7
Me
Me
N
ˇ
ˇ
´
´
´
ˇ´
´
´ˇ
Marchalın, S.; Zuzˇiova, J.; Kadlecıkova, K.; Safar, P.;
Baran, P.; Dalla, V.; Da¨ıch, A. Tetrahedron Lett. 2007, 48,
697; (h) Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc.
2006, 128, 12050; (i) Kaloko, J., Jr.; Hayford, A. Org.
Lett. 2005, 7, 4305; (j) Kel’in, A. V.; Sromek, A. W.;
Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074; (k)
Padwa, A.; Austin, D. J.; Precedo, L.; Zhi, L. J. Org.
Chem. 1993, 58, 1144.
N
I2, rt
63%
N
N
I
I
H
9
8
Scheme 5.
5. For selected examples on indolizine-based drug develop-
ment, see: (a) Gundersen, L.-L.; Charnock, C.; Negussie,
A. H.; Rise, F.; Teklu, S. Eur. J. Pharm. Sci. 2007, 30, 26;
(b) Hynd, G.; Ray, N. C.; Finch, H.; Montana, J. G.;
Cramp, M. C.; Harrison, T. K.; Arienzo, R.; Blaney, P.;
Griffon, Y.; Middlemiss, D. WO 2007031747 A1, 2007; (c)
Millet, R.; Domarkas, J.; Rigo, B.; Goossens, L.; Goos-
sens, J.-F.; Houssin, R.; Henichart, J.-P. Bioorg. Med.
Chem. 2002, 10, 2905; (d) Sonnet, P.; Dallemagne, P.;
Guillon, J.; Enguehard, C.; Stiebing, S.; Tanguy, J.;
Bureau, R.; Rault, S.; Auvray, P.; Moslemi, S.; Sourdaine,
P.; Seralini, G.-E. Bioorg. Med. Chem. 2000, 8, 945; (e)
Hagishita, S.; Yamada, M.; Shirahase, K.; Okada, T.;
Murakami, Y.; Ito, Y.; Matsuura, T.; Wada, M.; Kato, T.;
Ueno, M.; Chikazawa, Y.; Yamada, K.; Ono, T.; Teshir-
ogi, I.; Ohtani, M. J. Med. Chem. 1996, 39, 3636; (f)
Gubin, J.; de Vogelaer, H.; Inion, H.; Houben, C.;
Lucchetti, J.; Mahaux, J.; Rosseels, G.; Peiren, M.; Clinet,
M.; Polster, P.; Chatelain, P. J. Med. Chem. 1993, 36,
1425; (g) Jaffrezou, J. P.; Levade, T.; Thurneyssen, O.;
Chiron, M.; Bordier, C.; Attal, M.; Chatelain, P.; Laurent,
G. Cancer Res. 1992, 52, 1352; (h) Cingolani, G. M.;
Claudi, F.; Massi, M.; Venturi, F. Eur. J. Med. Chem.
1990, 25, 709.
the carboethoxy group of 3 seemed to be relevant to the
above hydrative cyclization.
In conclusion, we have discovered a novel route to 3-
acylated indolizines based upon a facile 5-exo-dig iodo-
cyclization of alkynes 2 where a pyridinyl nitrogen was
again engaged as an internal nucleophile. A series of
reaction cascades after the cyclization allowed this
hydrative cyclization to be feasible. Given the mildness
and eco-friendliness of this procedure, it should be valu-
able for the synthesis of other structurally related com-
pounds as well. Further studies are ongoing along this
line and will be reported in due course.
Acknowledgments
We thank the Center for Biological Modulators and
Korea Research Institute of Chemical Technology for
generous financial support.
6. For recent examples on 5-exo-dig iodocyclizations, see: (a)
GowriSankar, S.; Lee, M. J.; Lee, S.; Kim, J. N. Bull.
Korean Chem. Soc. 2004, 25, 1963; (b) Wu, Z.; Minhas, G.
S.; Wen, D.; Jiang, H.; Chen, K.; Zimniak, P.; Zheng, J. J.
Med. Chem. 2004, 47, 3282; (c) Hessian, K. O.; Flynn, B.
L. Org. Lett. 2003, 5, 4377; (d) Ren, X. F.; Turos, E.
Tetrahedron Lett. 1993, 34, 1575.
Supplementary data
1
Characterization data and copies of H and 13C NMR
spectra for compounds 2–9. Supplementary data associ-
ated with this article can be found, in the online version,
7. General procedure for the synthesis of alkynes 2: To a
stirred solution of ethyl pyridineacetate (1.5 mmol,
1 equiv) in THF was added LHMDS (1.0 M solution in
THF, 1.1 equiv) at ꢀ78 °C. After 15 min, a solution of the
appropriate propargylic bromides (1.1 equiv) in THF was
slowly added to this reaction mixture at ꢀ78 °C. After
being stirred for 16 h while slowly warming up to rt, the
reaction mixture was quenched with saturated aqueous
NH4Cl at 0 °C. The organic layer was washed with brine
and the aqueous layer was extracted with ethyl acetate one
more time. The combined organic layers were dried over
MgSO4, filtered, and evaporated in vacuo. The resulting
residue was purified by flash column chromatography
(hexanes–ethyl acetate = 10:1) to afford alkynes 2.
References and notes
1. (a) Kim, I.; Lee, G. H.; No, Z. S. Bull. Korean Chem. Soc.
2007, 28, 685; (b) Kim, I.; Choi, J.; Won, H. K.; Lee, G. H.
Tetrahedron Lett. 2007, 48, 6863; (c) Kim, I.; Won, H. K.;
2. For recent reviews on iodocyclizations, see: (a) Togo, H.;
Iida, S. Synlett 2006, 2159; (b) Martins da Silva, F.; Jones,
J., Jr.; de Mattos, M. C. S. Curr. Org. Synth. 2005, 2, 393.
3. For general reviews, see: (a) Shipman, M. Sci. Synth. 2001,
745; (b) Michael, J. P. Nat. Prod. Rep. 2000, 17, 579; (c)
1
2-Pyridin-2-yl-pent-4-ynoic acid ethyl ester (2a): H NMR