THIOPHENE-S-OXIDE PHOTOCHEMISTRY
ethanol:methanol solvent mixture. The solution was flushed with
Ar in an NMR tube and then plunged into liquid nitrogen in a
transparent quartz dewar. The light source was the broadly
emitting 300 nm tubes described previously. In separate
experiments, after 2–3 min (6 bulbs) or 40 min (8 bulbs), the
NMR tube was allowed to warm in the dark to ꢀ68 8C in an
acetone/dry ice bath before being lowered into a pre-cooled
NMR probe held at ꢀ50 8C. Spectra were obtained at ꢀ50 8C and
periodically as the sample was allowed to warm slowly to room
temperature. No significant change was observed in the
spectrum over this period of time, save for a small change in
the chemical shift of the thiophene protons (<0.1 ppm). The
short photolysis resulted in an approximate 5% conversion of 1a,
while the longer photolysis converted all of the material. After
withdrawal of the sample from the NMR instrument at room
temperature, a small quantity of solid material was observed in
the high conversion sample, as in the room temperature
photolyses in methanol.
[20] K. Arima, D. Ohira, M. Watanabe, A. Miura, S. Mataka, T. Thiemann, J. I.
Valcarcel, D. J. Walton, Photochem. Photobiol. Sci. 2005, 4, 808–
816.
[21] W. Schroth, R. Spitzner, C. Bruhn, Eur. J. Org. Chem. 1998, 2365–2371.
[22] E. Block, M. Birringer, R. DeOrazio, J. Fabian, R. S. Glass, C. Guo, C. He, E.
Lorance, Q. Qian, T. B. Schroeder, Z. Shan, M. Thiruvazhi, G. S. Wison, S.
Zhang, J. Am. Chem. Soc. 2000, 122, 5052–5064.
[23] E. Block, J. Page, J. P. Toscano, C.-X. Wang, X. Zhang, R. DeOrazio, C.
Guo, R. S. Sheridan, G. H. N. Towers, J. Am. Chem. Soc. 1996, 118,
4719–4720.
[24] P. J. Kropp, G. E. Fryxell, M. W. Tubergen, M. W. Hager, G. D. Harris Jr.,
T. P. McDermott Jr., R. Tornero-Velez, J. Am. Chem. Soc. 1991, 113,
7300–7310.
[25] J. W. Cubbage, T. A. Tetzlaff, H. Groundwater, R. D. McCulla, M. Nag,
W. S. Jenks, J. Org. Chem. 2001, 66, 8621–8628.
[26] T. Thiemann, D. Ohira, K. Arima, T. Sawada, S. Mataka, F. Marken, R. G.
Compton, S. Bull, S. G. Davies, J. Phys. Org. Chem. 2000, 13, 648–653.
[27] J. Nakayama, S. Yamaoka, M. Hoshino, Tetrahedron Lett. 1988, 29,
1161–1164.
[28] J. Nakayama, R. Hasemi, K. Yoshimura, Y. Sugihara, S. Yamaoka, J. Org.
Chem. 1998, 63, 4912–4924.
[29] J. Nakayama, Y. Sugihara, Sulfur Rep. 1997, 19, 349–375.
[30] J. Nakayama, T. Yu, Y. Sugihara, A. Ishii, Chem. Lett. 1997, 499–500.
[31] J. Nakayama, Y. Sano, Y. Sugihara, A. Ishii, Tetrahedron Lett. 1999, 40,
3785–3788.
Computational methods
[32] J. Nakayama, Sulfur Rep. 2000, 22, 123–149.
All computations were done by using the GAMESS suite of
programs[70] and all structures and orbitals were visualized by
using the MacMolPlt[71] application.
[33] J. Nakayama, T. Otani, Y. Sugihara, Y. Sano, A. Ishii, A. Sakamoto,
Heteroat. Chem. 2001, 12, 333–348.
[34] We did successfully prepare 1a by this route.
[35] M. G. Reinecke, P. Pedaja, In Halothiophenes and Their Reactions, (Ed.:
S. Gronowitz), Vol. 44, Part 2, Wiley, New York, 1985, 159–522.
[36] The quantum yield of sulfide formation is given by the product of the
yield of sulfide and the quantum yield for loss of the sulfoxide.
[37] T. J. Barton, G. P. Hussmann, J. Am. Chem. Soc. 1983, 105, 6316–6318.
[38] S. A. Stoffregen, M. Heying, W. S. Jenks, J. Am. Chem. Soc. 2007, 129,
15746–15747.
[39] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon,
J. H. Jensen, S. Koseki, N. Matsunaga, N. Nguyen, S. J. Su, T. L. Windus,
M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347–1363.
[40] L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, J. A. Pople,
J. Chem. Phys. 1998, 109, 7764–7776.
Acknowledgements
The authors gratefully acknowledge the National Science
Foundation (CHE 0211371) for partial support of this work.
[41] S. S. Xantheas, T. H. Dunning, Jr., J. Phys. Chem. 1993, 97, 18–19.
[42] A. J. Frank, F. Turecek, J. Phys. Chem. A 1999, 103, 5348–5361.
[43] B. S. Jursic, Theochem 1999, 467, 187–193.
REFERENCES
[1] G. M. Gurria, G. H. Posner, J. Org. Chem. 1973, 38, 2419–2420.
[2] J. R. Shelton, K. E. Davis, Int. J. Sulfur Chem. 1973, 8, 217–228.
[3] I. W. J. Still, In Photochemistry of Sulfoxides and Sulfones, (Eds.: S. Patai,
Z. Rappaport, C. J. M. Stirling,), John Wiley & Sons Ltd., New York,
1988, 873–887.
[4] W. S. Jenks, D. D. Gregory, Y. Guo, W. Lee, T. Tetzlaff, Mol. Supramol.
Photochem. 1997, 1, 1–56.
[5] D. D. Gregory, Z. Wan, W. S. Jenks, J. Am. Chem. Soc. 1997, 119,
94–102.
[6] Z. Wan, W. S. Jenks, J. Am. Chem. Soc. 1995, 117, 2667–2668.
[7] M. Nag, W. S. Jenks, J. Org. Chem. 2005, 70, 3458–3463.
[8] E. Lucien, A. Greer, J. Org. Chem. 2001, 66, 4576–4579.
[9] K. B. Thomas, A. Greer, J. Org. Chem. 2003, 68, 1886–1891.
[10] R. D. McCulla, W. S. Jenks, J. Am. Chem. Soc. 2004, 126, 16058–16065.
[11] M. Nag, W. S. Jenks, J. Org. Chem. 2004, 69, 8177–8182.
[12] W. S. Jenks, N. Matsunaga, M. Gordon, J. Org. Chem. 1996, 61,
1275–1283.
[44] C. W. Bauschlicher Jr., H. Partridge, Chem. Phys. Lett. 1995, 240,
533–540.
[45] R. D. Bell, A. K. Wilson, Chem. Phys. Lett. 2004, 394, 105–109.
[46] J. M. L. Martin, Chem. Phys. Lett. 1999, 310, 271–276.
[47] P. J. A. Ruttink, P. C. Burgers, M. A. Trikoupis, J. K. Terlouw, Chem. Phys.
Lett. 2001, 342, 447–451.
[48] O. N. Ventura, M. Kieninger, P. A. Denis, R. E. Cachau, Chem. Phys. Lett.
2002, 355, 207–213.
[49] A. K. Wilson, T. H. Dunning Jr., J. Chem. Phys. 2003, 119, 11712–11714.
[50] A. K. Wilson, T. H. Dunning Jr., J. Phys. Chem. A 2004, 108, 3129–3133.
[51] D. D. Gregory, W. S. Jenks, J. Org. Chem. 1998, 63, 3859–3865.
[52] D. D. Gregory, W. S. Jenks, J. Phys. Chem. A 2003, 107, 3414–3423.
[53] F. Jensen, T. Helgaker, J. Chem. Phys. 2004, 121, 3463–3470.
[54] P. Piecuch, S. A. Kucharski, K. Kowalski, M. Musial, Comp. Phys.
Commun. 2002, 149, 71–96.
[55] E. M. Rockafellow, D. McCulla Ryan, W. S. Jenks, J. Photochem.
Photobiol. A 2008, doi:10.1016/j.jphotochem.2008.02.014.
[56] W. S. Jenks, W. Lee, D. Shutters, J. Phys. Chem. 1994, 98, 2282–2289.
[57] W. Lee, W. S. Jenks, J. Org. Chem. 2001, 66, 474–480.
[58] R. S. Glass, J. R. Pollar, T. B. Schroeder, D. L. Lichtenberger, E. Block, R.
DeOrazio, C. Guo, M. Thiruvazhi, Phosphorus, Sulfur Silicon Relat. Elem.
1997, 120 440.
[13] S. A. Stoffregen, D. McCulla Ryan, R. Wilson, S. Cercone, J. Miller, W. S.
Jenks, J. Org. Chem. 2007, 72, 8235–8242.
[14] We also believed that we could carry out very reasonable quantum
chemical calculations on thiophene-S-oxide photochemical dis-
sociation, but not on DBTO. Those results will be published separately.
[15] N. Furukawa, S. Zhang, S. Sato, M. Higaki, Heterocycles 1997, 44,
61–66.
[16] P. Pouzet, I. Erdelmeier, D. Ginderow, J.-P. Mornon, P. Dansette, D.
Mansuy, Chem. Commun. 1995, 473–474.
[17] D. D. Gregory, Iowa State University, 1998.
[59] R. S. Glass, N. E. Gruhn, D. L. Lichtenberger, E. Lorance, J. R. Pollard, M.
Birringer, E. Block, R. DeOazio, C. He, Z. Shan, X. Zhang, J. Am. Chem.
Soc. 2000, 122, 5065–5074.
[60] Temperature also has a modest effect. The CCSD(T) enthalpy at O K has
6 an 7 at the same energy, for example.
[18] T. Thiemann, K. Arima, S. Mataka, Kyushu Daigaku Kino Busshitsu
Kagaku Kenkyusho Hokoku 2000, 14, 37–45.
[19] T. Thiemann, K. G. Dongol, J. Chem. Res. (S) 2002, 303–308.
[61] It is possible that the insoluble material in methanol may be S8, but we
were unable to determine that.
[62] J. Nakayama, R. Hasemi, J. Org. Chem. 1998, 63, 4912–4924.
J. Phys. Org. Chem. 2008, 21 915–924
Copyright ß 2008 John Wiley & Sons, Ltd.