Electronic Structure of Iron(III)-Porphyrin NO Adducts
A R T I C L E S
Table 1. Vibrational Properties of Ferric Heme NO Adducts in
victims using small NO-carrier proteins, the so-called nitro-
phorins (Np’s).6 Finally, nitric oxide is an intermediate in
dissimilatory denitrification.7 In a number of these proteins,
ferric heme NO adducts occur as intermediates of catalysis or
as enzyme-product complexes. The observed biological
Fe(III)-porphyrin NO adducts can be divided into two classes,
depending on the nature of the axial ligand coordinated trans
to NO, which is either an N-donor ligand such as histidine (His)
or a thiolate cysteinate (Cys). In cytochrome cd1 nitrite reductase
(NiR), a six-coordinate (6C) ferric heme NO complex with axial
His coordination is observed as the enzyme-product complex.8
The nitrophorins from Rhodnius prolixus (rNp1-rNp4) contain
ferric heme centers with axial His ligation.6a,c These Np proteins
reversibly bind NO and release it in the victim’s tissue. Ferric
heme NO adducts with axial Cys coordination occur at the end
of the catalytic cycle of the NOS enzymes. Recently, corre-
sponding nitrophorins containing an axial Cys ligand have also
been identified.6c Finally, the ferric form of fungal NO reductase
(P450nor) is catalytically active and binds NO to form an
Fe(III)-porphyrin NO adduct with axial Cys coordination (the
enzyme-substrate complex).9,10
Proteins and Model Complexes
complex
ν(N-O) [cm-1
]
ν(Fe-NO) [cm-1
]
refs
P450cam-NO
1806
1818
1828
1851
1868
528
520
510
530
538
537
611/600
604
594
591
596
-
9c, 41
9c, 41
58
9c
9c, 59
4d
13, 16a
40, 60
61
6b, 45
62
P450cam-NO + adamantone
a
SR-NO
P450nor-NO
CPO-NO
iNOS-NO
a
b
1868/1838
1903
1904
1917
1918
1921
1925
1927
[Fe(OEP)(NO)](ClO4)
a
HRP-NO
a
NorBC-NO
rNp1-NO
a
hHO-1-NO
[Fe(OEP)(MI)(NO)](ClO4)
14a
a
594
595
-
Hb-NO
63, 40
64, 40
14d
a
Mb-NO
[Fe(TPP)(HO-i-C5H11)(NO)](ClO4) 1935
a SR ) picket fence porphyrin model complex with axial thiolate
ligand; CPO chloroperoxidase; HRP horseradish peroxidase;
)
)
NorBC ) bacterial NOR; hHO-1 ) human heme oxygenase-1; Hb )
hemoglobin; Mb ) myoglobin. b Data are given for the chloroform
solvate and the corresponding solvent-free complex, respectively.
In the so-called Enemark-Feltham scheme, the Fe(III)-
porphyrin NO adducts are classified as {FeNO}6 complexes,
where the exponent “6” refers to the number of Fe d electrons
plus the unpaired electron of NO.11 The electronic structure of
the {FeNO}6 heme complexes with axial N-donor coordination
has in general been described8 as Fe(II)-NO+ in agreement
with {RuNO}6 systems, in which this electronic structure has
been observed previously and studied extensively.12 Hence, the
Fe-NO interaction in these complexes is dominated by π back-
bonding from two t2-type d orbitals (“dπ” orbitals) of low-spin
Fe(II) into the unoccupied π* orbitals of NO+. This bonding
description is analogous to that for the isoelectronic Fe(II)-CO
complexes. Crystal structures of Fe(III)-porphyrin NO model
complexes are known for five-coordinate (5C) [Fe(OEP)(NO)]
(ClO4) (OEP ) octaethylporphyrin)13 and six-coordinate (6C)
[Fe(OEP)(L)(NO)](ClO4) (L ) neutral N-donor ligands).14
These complexes show linear Fe-N-O units and extremely
short Fe-NO bond lengths of 1.63-1.65 Å, in agreement with
the Fe(II)-NO+ description. The N-O stretching vibrations in
these complexes are usually found in the 1900 cm-1 region
(Table 1), which also reflects the coordinated NO+. Hence, it
was believed for some time that the bonding description of
{FeNO}6 is fully analogous to that of Fe(II)-CO.
However, recent density functional theory (DFT) studies
found that the N-O and Fe-NO stretching vibrations in
Fe(III)-porphyrin NO adducts show a direct correlation upon
porphyrin ring substitution, which is in contrast to the behavior
of Fe(II)-porphyrin CO complexes.15 Therefore, further con-
tributions to the Fe-NO bond in addition to the strong π back-
bond must exist in these complexes.16 Related to this, axial
thiolate coordination to {FeNO}6 in heme proteins and model
complexes is known to induce bent Fe-N-O units ( (Fe-N-O)
) 161-165°),17,9b,18 and lower N-O stretching frequencies
(1800-1850 cm-1). In a recent study, these differences have
been attributed to a trans effect of the thiolate on the bound
NO that leads to the occupation of an Fe-N-O σ antibonding
orbital, which is responsible for the bending of the Fe-N-O
unit and the weakening of the Fe-NO and N-O bonds.19 In
addition to these slight variations in the “classic” π back-bonding
(5) (a) Garbers, D. L.; Lowe, D. G. J. Biol. Chem. 1994, 269, 30741–
30744. (b) Zhao, Y.; Hoganson, C.; Babcock, G. T.; Marletta, M. A.
Biochemistry 1998, 37, 12458–12464. (c) Karow, D. S.; Pan, D.; Tran,
R.; Pellicena, P.; Presley, A.; Mathies, R. A.; Marletta, M. A.
Biochemistry 2004, 43, 10203–10211. (d) Gilles-Gonzalez, M.-A.;
Gonzales, G. J. Inorg. Biochem. 2005, 99, 1–22.
(6) (a) Ribeiro, J. M. C.; Hazzard, J. M. H.; Nussenzveig, R. H.;
Champagne, D. E.; Walker, F. A. Science 1993, 260, 539–541. (b)
Ding, X. D.; Weichsel, A.; Andersen, J. F.; Shokhireva, T. K.; Balfour,
C.; Pierik, A. J.; Averill, B. A.; Montfort, W. R.; Walker, F. A. J. Am.
Chem. Soc. 1999, 121, 128–138. (c) Walker, F. A. J. Inorg. Biochem.
2005, 99, 216–236.
(7) (a) Ferguson, S. J. Curr. Opin. Chem. Biol. 1998, 2, 182–193. (b)
Richardson, D. J.; Watmough, N. J. Curr. Opin. Chem. Biol. 1999, 3,
207–219. (c) Moura, I.; Moura, J. J. G. Curr. Opin. Chem. Biol. 2001,
5, 168–175.
(8) (a) Averill, B. A. Chem. ReV. 1996, 96, 2951–2964. (b) Wasser, I. M.;
de Vries, S.; Moe¨nne-Loccoz, P.; Schro¨der, I.; Karlin, K. D. Chem.
ReV. 2002, 102, 1201–1234.
(9) (a) Park, S.-Y.; Shimizu, H.; Adachi, S.-I.; Nakagawa, A.; Tanaka, I.;
Nakahara, K.; Shoun, H.; Obayashi, E.; Nakamura, H.; Iizuka, T.;
Shiro, Y. Nat. Struct. Biol. 1997, 4, 827–832. (b) Shimizu, H.; Park,
S.-Y.; Gomi, Y.; Arakawa, H.; Nakamura, H.; Adachi, S.-I.; Obayashi,
E.; Iizuka, T.; Shoun, H.; Shiro, Y. J. Biol. Chem. 2000, 275, 4816.
(c) Obayashi, E.; Tsukamoto, K.; Adachi, S.-I.; Takahashi, S.; Nomura,
M.; Iizuka, T.; Shoun, H.; Shiro, Y. J. Am. Chem. Soc. 1997, 119,
7807–7816. (d) Daiber, A.; Shoun, H.; Ullrich, V. J. Inorg. Biochem.
2005, 99, 185–193.
(13) Ellison, M. K.; Schulz, C. E.; Scheidt, W. R. Inorg. Chem. 2000, 39,
5102–5110.
(14) (a) Ellison, M. K.; Scheidt, W. R. J. Am. Chem. Soc. 1999, 121, 5210–
5219. (b) Ellison, M. K.; Schulz, C. E.; Scheidt, W. R. J. Am. Chem.
Soc. 2002, 124, 13833–13841. (c) Scheidt, W. R.; Lee, Y. J.; Hatano,
K. J. Am. Chem. Soc. 1984, 106, 3191–3198. (d) Yi, G.-B.; Chen, L.;
Khan, M. A.; Richter-Addo, G. B. Inorg. Chem. 1997, 36, 3876–3885.
(15) (a) Li, X.-Y.; Spiro, T. G. J. Am. Chem. Soc. 1988, 110, 6024–6033.
(b) Ray, G. B.; Li, X.-Y.; Ibers, J. A.; Sessler, J. L.; Spiro, T. G.
J. Am. Chem. Soc. 1994, 116, 162–176, and references therein.
(16) (a) Linder, D. P.; Rodgers, K. R.; Banister, J.; Wyllie, G. R. A.; Ellison,
M. K.; Scheidt, W. R. J. Am. Chem. Soc. 2004, 126, 14136–14148.
(b) Linder, D. P.; Rodgers, K. R. Inorg. Chem. 2005, 44, 1367–1380.
(17) Pant, K.; Crane, B. R. Biochemistry 2006, 45, 2537–2544.
(18) Xu, N.; Powell, D. R.; Cheng, L.; Richter-Addo, G. B. Chem. Commun.
2006, 2030–2032.
(10) (a) Shiro, Y.; Fujii, M.; Iizuka, T.; Adachi, S.-I.; Tsukamoto, K.;
Nakahara, K.; Shoun, H. J. Biol. Chem. 1995, 270, 1617–1623. (b)
Lehnert, N.; Praneeth, V. K. K.; Paulat, F. J. Comput. Chem. 2006,
27, 1338–1351.
(11) Enemark, J. H.; Feltham, R. D. Coord. Chem. ReV. 1974, 13, 339–
406.
(12) (a) Bottomley, F. Coord. Chem. ReV. 1978, 26, 7–32, and references
therein. (b) Paulat, F.; Kuschel, T.; Na¨ther, C.; Praneeth, V. K. K.;
Sander, O.; Lehnert, N. Inorg. Chem. 2004, 43, 6979–6994.
(19) Paulat, F.; Lehnert, N. Inorg. Chem. 2007, 46, 1547–1549.
9
J. AM. CHEM. SOC. VOL. 130, NO. 46, 2008 15289