C. A. Faler, M. M. Joullié / Tetrahedron Letters 49 (2008) 6512–6513
6513
O
O
O
O
HO
MeO
MeO
a,b
R
R
a or b
OMe
O
OMe
R
N
N
N
O
NH
O
N
2
Bn
Bn
Bn
R'
Bn
4
R = Ph, CO2Me, CO2i-Pr
HO
R' = OH, Cl
c
Figure 5. Cyclopropanol ring-opening. Reaction conditions: (a) silica gel, O2; R0 =
OH; (b) FeCl3, pyridine, DMF; R0 = Cl.
O
N
Bn
5
Figure 2. Synthesis of azabicyclo[3.1.0]hexanol. Reagents and conditions: (a)
benzaldehyde, Na(OAc)3BH, CH2Cl2, 95%; (b) allyl bromide, K2CO3, Bu4NI, MeCN,
86%; (c) ClTi(Oi-Pr)3, c-C5H7MgBr, THF, 64%.
Kulinkovich mechanism, must have given rise to the unexpected
pyrrolidinone.
In conclusion, we have synthesized three azabicyclo[3.1.0]hex-
anols (3, 5, and 7). The [3.1.0] system is formed preferentially over
other cyclic systems, and slight changes in cyclization conditions
give much lower yields and monocyclic side products.
O
O
O
O
a,b
HO
OH
MeO
OMe
NH
N
2
Bn
Acknowledgments
6
O
HO
c
We thank the NSF (CHEM-0515443), Wyeth Research, and the
University of Pennsylvania for the financial support. We are also
grateful to Dr. Rakesh Kohli for technical assistance and Dr. George
Furst for NMR assistance, especially with the HMBC experiments.
MeO
N
Bn
7
Figure 3. Bicyclo[3.1.0]hexanol from glutamic acid. Reagents and conditions: (a)
SOCl2, MeOH, quant.; (b) benzaldehyde, Na(OAc)3BH, CH2Cl2, 90%; (c) allyl bromide,
K2CO3, Bu4NI, MeCN, 85%; (c) ClTi(Oi-Pr)3, c-C5H7MgBr, THF, 65%.
Supplementary data
Experimental procedures, characterization, and spectra for
compounds 1, 3, 4, and 5 are available. Supplementary data associ-
ated with this article can be found, in the online version, at
HO
CO i-Pr
i-Pr O C
2
C H MgCl
2
6
11
i-Pr O C
2
N
N
Ti(O i-Pr)
4
Bn
Bn
References and notes
O
i-Pr O C
2
1. (a) Cao, B.; Xiao, D.; Joullié, M. Org. Lett. 1999, 1, 1799–1801; (b) Faler, C. A.;
Cao, B.; Joullié, M. Heterocycles 2006, 67, 519–522.
2. Kulinkovich, O.; Sviridov, S.; Vasilevskii, D.; Pritytskaya, T. Zh. Org. Khim. 1989,
25, 2244–2245.
3. (a) Kim, S.; Sung, M.; Cha, J. Org. Synth. 2003, 80, 111–119; (b) Kasatkin, A.; Sato,
F. Tetrahedron Lett. 1995, 36, 6079–6082.
N
Bn
Figure 4. Ollivier’s cyclization of N-allyl-N-benzylaspartate.
4. Okamoto, S.; Kobayashi, M.; Iwakubo, K.; Sato, F. J. Am Chem. Soc. 1997, 119,
6984–6990.
5. Maggini, M.; Prato, M.; Ranelli, M.; Scorrano, G. Tetrahedron Lett. 1992, 33,
6537–6540.
the observed pyrrolidinone resulted from a rearrangement of
cyclopropanol.
6. (a) Lee, J.; Cha, . J. K. J. Org. Chem. 1997, 62, 1584–1585; (b) Chaplinski, V.;
deMeijere, A. Angew. Chem., Int. Ed. 1996, 35, 413–414.
7. Stereochemistry was proved by a HMBC experiment because the [4.1.0] system
is predicted to have similar 1H shifts.
8. (a) Seebach, D.; Hungerbühler, E.; Naef, R.; Schnurrenberger, P.; Weidmann, B.;
Zuger, M. Synthesis 1982, 138–141; (b) Lewis, N.; Ribas, C.; Wells, A. Synlett
1999, 957–959; (c) Eisch, J. J.; Adeosun, A. A.; Gitua, J. N. Eur. J. Org. Chem. 2003,
4721–4727.
9. Garnier, J.-M.; Jida, M.; Ollivier, J. Synlett 2006, 2739–2742.
10. (a) Ito, Y.; Fujii, S.; Saegusa, T. J. Org. Chem. 1976, 41, 2073–2074; (b) Booker-
Milburn, K.; Thompson, D. Synlett 1993, 592–594; (c) Iwasawa, N.; Hayakawa,
S.; Funahashi, M.; Isobe, K.; Narasaka, K. Bull. Chem. Soc. Jpn. 1993, 66, 819–
827.
The preferential formation of five-membered rings observed by
Ollivier is in accord with our results. However, all of our attempts
to convert the cyclopropanol into a pyrrolidinone resulted in
decomposition or recovery of starting material (Fig. 5). Only a
few oxidative reagents would react with the cyclopropanol, and
those experiments led to a ring-expanded product, which is consis-
tent with the literature precedent.10
As a pyrrolidinone was isolated from the cyclopropanation
reaction, but not directly from the cyclopropanol, we believe that
another intermediate, possibly a titanacycle from the accepted