observed in our catalyst system. Indeed, the method devel-
oped here represents a rare example of C-S bond formation
through transition-metal-catalyzed C-H functionalization.9
Benzothiazoles are a considerably important class of
heterocycles in the medicinal area due to their broad range
of biological activities.10 Oxidative cyclization of thioben-
zanilides using various oxidants, including Jacobson’s and
Hugershoff’s methods, has been among the most widely used
routes to benzothiazoles.11,12 However, low functional group
tolerance is a major drawback of these methods as substit-
uents such as the alkoxycarbonyl group or the cyano group
seem difficult to retain intact in Jacobson’s synthesis.12c
Using stoichiometric or excess amounts of toxic reagents,
such as bromine12a or metals,12c,e may also have disadvan-
tages. Pd- or Cu-catalyzed cyclization of 2-halophenylth-
iobenzamides provide another access to benzothiazoles.13 It
is necessary to prefunctionalize starting materials in this
reaction, which significantly limits the utility and applicability
of this approach.
We began our study by examining the reaction of
thiobenzanilide 1 to 2-phenylbenzothiazole 2 in DMSO to
obtain the optimal reaction conditions (Table 1). During an
Table 1. Effect of Reaction Parameters
yielda
(%)
(4) For selected recent examples, see (C-C bond formation): (a) Shi,
B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008,
47, 4882. (b) Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi, Z.-J. Angew. Chem., Int.
Ed. 2008, 47, 1115. (c) Chernyak, N.; Gevorgyan, V. J. Am. Chem. Soc.
2008, 130, 5636. (d) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou, Z.; Chan,
A. S. C. J. Am. Chem. Soc. 2008, 130, 3304. (e) Campeau, L.-C.; Schipper,
D. J.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3266. (f) Lebrasseur, N.;
Larrosa, I. J. Am. Chem. Soc. 2008, 130, 2926. (g) Zhang, Y.; Feng, J.; Li,
C.-J. J. Am. Chem. Soc. 2008, 130, 2900. (h) Larive´e, A.; Mousseau, J. J.;
Charette, A. B. J. Am. Chem. Soc. 2008, 130, 52. (i) Brasche, G.; Garc´ıa-
Fortanet, J.; Buchwald, S. L. Org. Lett. 2008, 10, 2207. (j) Potavathri, S.;
Dumas, A. S.; Dwight, T. A.; Naumiec, G. R.; Hammann, J. M.; DeBoef,
B. Tetrahedron Lett. 2008, 49, 4050. (k) Gorelsky, S. I.; Lapointe, D.;
Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848. (l) Chiong, H. A.; Daugulis,
O. Org. Lett. 2007, 9, 1449. (m) Chiong, H. A.; Pham, Q.-N.; Daugulis, O.
J. Am. Chem. Soc. 2007, 129, 9879. (n) Seregin, I. V.; Ryabova, V.;
Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 7742. (o) Chuprakov, S.;
Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333. (p)
Lafrance, M.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2007, 129,
14570. (q) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904.
(r) Shabashov, D.; Daugulis, O. Org. Lett. 2006, 8, 4947. (s) Lafrance, M.;
Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496. (t) Deprez, N. R.; Kalyani,
D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972. (u)
Lazareva, A.; Daugulis, O. Org. Lett. 2006, 8, 5211. (v) Delcamp, J. H.;
White, M. C. J. Am. Chem. Soc. 2006, 128, 15076. (w) Campeau, L.-C.;
Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020. (x) Kalyani,
D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005,
127, 7330. (y) Park, C.-H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.,
Gevorgyan, V. Org. Lett. 2004, 6, 1159 (C-halogen bond formation): (z)
Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8,
2523(C-N bond formation): (aa) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am.
Chem. Soc. 2006, 128, 9048. (bb) Tsang, W. C. P.; Zheng, N.; Buchwald,
entry “Pd” (mol %) “Cu” (mol %) Bu4NBr cosolvent
1b Pd(OAc)2 (30) Cu(OAc)2 (100)
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
-
+
-
+
-
-
-
-
-
-
-
-
-
-
-
16
49
56
12
47
31
13
8
2
3
4
5
6
7
8
9
Pd(OAc)2 (30) Cu(OAc)2 (100)
PdCl2 (30)
PdCl2 (30)
PdCl2 (30)
PdCl2 (30)
PdCl2 (30)
PdCl2 (30)
PdCl2 (20)
Cu(OAc)2 (100)
Cu(OTf)2 (100)
Cu(acac)2 (100)
CuF2 (100)
CuCl2 (100)
CuBr2 (100)
CuI (100)
65
65
42
10 PdCl2 (20)
11 PdCl2 (10)
12 PdCl2 (10)
13 PdCl2 (10)
14 PdCl2 (10)
15 PdCl2 (10)
16 PdCl2 (10)
CuI (50)
CuI (50)
CuI (50)
dioxane 31
o-xylene 45
2-BuOH 43
CuI (50)
CuI (50)
CuI (50)
DMF
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
48
74
79
79
53
<2
34
3
CuI (50)
17 PdCl2(cod) (10) CuI (50)
18 PdBr2 (10)
19 PdCl2 (5)
20 PdCl2 (10)
21 PdCl2 (10)
22 PdCl2 (10)
CuI (50)
CuI (50)
CuI (100)
0
0
23
24
25
0
0
0
CuI (50)
CuI (50)
0
0 (84)c
0
0 (quant)c
a Yield of isolated product from reaction on a 0.14-0.29 mmol scale.
b 39 h. c Yield of recovered starting material in parentheses.
S. L. J. Am. Chem. Soc. 2005, 127, 14560
.
(5) (C-heteroatom bond formation): (a) Zhao, B.; Du, H.; Shi, Y. J. Am.
Chem. Soc. 2008, 130, 7220. (b) Chen, X.; Hao, X.-S.; Goodhue, C. E.;
Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790 (C-C bond formation). (c)
Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128. (d) Phipps,
R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172. (e)
initial screening of the palladium/reoxidant combination, we
found that the addition of Bu4NBr considerably enhanced
this process (Table 1, entry 1 vs entry 2). Encouraged by
this result, we further examined this reaction using PdCl2 as
a palladium source. CuI proved to be best among an array
of copper salts tested (Table 1, entries 3-9). Interestingly,
the catalytic activity was maintained when the amount of
CuI was decreased to 50 mol % (Table 1, entries 10 and
11). The cosolvent effect was also investigated in the
Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968
(6) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org.
Lett. 2007, 9, 2931
(7) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932
(8) Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411
.
.
.
.
(9) Very recently, we reported the Pd(II)-catalyzed one-pot conversion
of thioenols into benzo[b]thiophenes via the formation of disulfides, see:
Inamoto, K.; Arai, Y.; Hiroya, K.; Doi, T. Chem. Commun. 2008, DOI:
10.1039/<B811362A>
.
(10) For selected recent examples, see: (a) Kok, S. H. L.; Gambari, R.;
Chui, C. H.; Yuen, M. C. W.; Lin, E.; Wong, R. S. M.; Lau, F. Y.; Cheng,
G. Y. M.; Lam, W. S.; Chan, S. H.; Lam, K. H.; Cheng, C. H.; Lai, P. B. S.;
Yu, M. W. Y.; Cheung, F.; Tang, J. C. O.; Chan, A. S. C. Bioorg. Med.
Chem. 2008, 16, 3626. (b) Liu, C.; Lin, J.; Pitt, S.; Zhang, R. F.; Sack,
J. S.; Kiefer, S. E.; Kish, K.; Doweyko, A. M.; Zhang, H.; Marathe, P. H.;
Trzaskos, J.; Mckinnon, M.; Dodd, J. H.; Barrish, J. C.; Schieven, G. L.;
Leftheris, K. Bioorg. Med. Chem. Lett. 2008, 18, 1874. (c) Henriksen, G.;
Hauser, A. I.; Westwell, A. D.; Yousefi, B. H.; Schwaiger, M.; Drzezga,
(12) For selected recent examples, see: (a) Thiel, O. R.; Bernard, C.;
King, T.; Dilmeghani-Seran, M.; Bostick, T.; Larsen, R. D.; Faul, M. M. J.
Org. Chem. 2008, 73, 3508. (b) Bose, D. S.; Idrees, M.; Srikanth, B.
Synthesis 2007, 819. (c) Wang, M.; Gao, M.; Mock, B. H.; Miller, K. D.;
Sledge, G. W.; Hutchins, G. D.; Zheng, Q.-H. Bioorg. Med. Chem. 2006,
14, 8599. (d) Bose, D. S.; Idrees, M. J. Org. Chem. 2006, 71, 8261. (e)
Mu, X.-J.; Zou, J.-P.; Zeng, R.-S.; Wu, J.-C. Tetrahedron Lett. 2005, 46,
4345.
(13) (a) Vera, M. D.; Pelletier, J. C. J. Comb. Chem. 2007, 9, 569. (b)
Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802. (c) Joyce, L. L.;
Evindar, G.; Batey, R. A. Chem. Commun. 2004, 446. (d) Bened´ı, C.; Bravo,
F.; Uriz, P.; Ferna´ndez, E.; Claver, C.; Castillo´n, S. Tetrahedron Lett. 2003,
44, 6073.
A.; Wester, H.-J. J. Med. Chem. 2007, 50, 1087
.
(11) Metzger, J. In ComprehensiVe Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol. 6, pp
322-326.
5148
Org. Lett., Vol. 10, No. 22, 2008