Fig. 2 Proposed formation of 3 (left), ORTEP of 3 drawn with 50% thermal ellipsoids (top right), and structurally-related pharmaceuticals (bottom right).
an increase in the enantiomeric excess of b-amidoaldehyde was
observed (entries 1, 3 and 4). Also, an increase in %ee was
observed when the total pressure of H2/CO was increased
(entry 2 and 3). Hydroformylation at temperatures below
70 1C led to formation of significant amounts of oxazinone.
While exploring the substrate scope of oxazolines derived
from naturally occurring a-amino acids, hydroformylation of
the tryptophan-derived oxazoline 1l led to a product whose
1H NMR spectrum was inconsistent with formation of a
b-amidoaldehyde. Further spectroscopic studies supported
the formation of the tetrahydrocarbazole product 3 (Fig. 2),
which was confirmed by single-crystal X-ray crystallography.w
3 (a) S. Lou, P. N. Moquist and S. E. Schaus, J. Am. Chem. Soc.,
2007, 129, 15398–15404; (b) J. Ahman, M. Birch, S. J. Haycock-
Lewandowski, J. Long and A. Wilder, Org. Process Res. Dev.,
2008, 12, 1104–1113.
4 (a) J. W. Yang, C. Chandler, M. Stadler, D. Kampen and B. List,
Nature, 2008, 452, 452–455; (b) J. W. Yang, M. Stadler and B. List,
Angew. Chem., Int. Ed., 2007, 46, 609–611; (c) For a review see:
´
A. Cordova, Acc. Chem. Res., 2004, 37, 102–112 and references
cited therein.
5 F. A. Davis and S. M. Szewczyk, Tetrahedron Lett., 1998, 39,
5951–5954.
6 F. A. Davis and M. Song, Org. Lett., 2007, 9, 2413–2416.
7 See for example: Y. K. Chen, M. Yoshida and D. W.
C. MacMillan, J. Am. Chem. Soc., 2006, 128, 9328–9329.
8 (a) P. Gizecki, R. Dhal, L. Toupet and G. Dujardin, Org. Lett.,
2000, 2, 585–588; (b) P. Gizecki, R. Dhal, C. Poulard, P. Gosselin
and G. Dujardin, J. Org. Chem., 2003, 68, 4338–4344;
(c) P. Gizecki, R. A. Youcef, C. Poulard, R. Dhal and
G. Dujardin, Tetrahedron Lett., 2004, 45, 9589–9592.
9 M. Terada and Y. Toda, J. Am. Chem. Soc., 2009, 131, 6954–6955.
10 (a) M. Rodriguez, A. Heitz and J. Martinez, Tetrahedron Lett.,
1990, 31, 7319–7322; (b) D. Limal, A. Quesnel and J.-P. Briand,
Tetrahedron Lett., 1998, 39, 4239–4242.
We propose
a reaction pathway where the expected
b-amidoaldehyde product is initially formed, followed by
intramolecular Friedel–Crafts hydroxyalkylation. The intra-
molecular reaction of the indole p system at the 2-position
with electrophiles is well precedented,19 including aldehydes.20
The mechanism for hydrogenolysis of the alcohol-substituted
intermediate to 3 has not been studied. In the homologation of
benzyl alcohols using synthesis gas and catalytic HCo(CO)4,
the major products are frequently methyl benzenes21 and an
analogous reaction mechanism may be operative here. The
tetrahydrocarbazole core found in 3 is present in a number of
bioactive molecules including Ramatroban,22 a drug used to
treat coronary artery disease and asthma, and Frovatriptan,23
a drug used to treat migraine headaches (Fig. 2).
11 For a review see: T. L. Church, Y. D. Y. L. Getzler, C. M. Byrne
and G. W. Coates, Chem. Commun., 2007, 657–674.
12 (a) J. W. Kramer, D. Y. Joh and G. W. Coates, Org. Lett., 2007, 9,
5581–5583; (b) J. W. Kramer, E. B. Lobkovsky and G. W. Coates,
Org. Lett., 2006, 8, 3709–3712; (c) J. A. R. Schmidt,
V. Mahadevan, Y. D. Y. L. Getzler and G. W. Coates, Org. Lett.,
2004, 6, 373–376; (d) V. Mahadevan, Y. D. Y. L. Getzler and
G. W. Coates, Angew. Chem., Int. Ed., 2002, 41, 2781–2784; (e) Y.
D. Y. L. Getzler, V. Mahadevan, E. B. Lobkovsky and
G. W. Coates, J. Am. Chem. Soc., 2002, 124, 1174–1175.
13 (a) H. Xu and L. Jia, Org. Lett., 2003, 5, 1575–1577; (b) H. Xu,
J. A. Gladding and L. Jia, Inorg. Chim. Acta, 2004, 357, 4024–4028.
14 C. M. Byrne, T. L. Church, J. W. Kramer and G. W. Coates,
Angew. Chem., Int. Ed., 2008, 47, 3979–3983.
15 R. W. Rosenthal and E. A. Naragon, US Patent 2 670 385, 1954.
16 (a) T. L. Church, Y. D. Y. L. Getzler and G. W. Coates, J. Am.
Chem. Soc., 2006, 128, 10125–10133; (b) J. M. Rowley,
E. B. Lobkovsky and G. W. Coates, J. Am. Chem. Soc., 2007,
129, 4948–4960.
In conclusion, we have developed an efficient route to
b-amidoaldehydes from oxazolines using the inexpensive,
commercially available precatalyst Co2(CO)8 with relatively
high levels of stereochemical retention. Efforts to further
optimize stereospecificity and substrate scope of oxazoline
hydroformylation are underway.
We are grateful to the Department of Energy for funding
(DE-FG02-05ER15687). We thank Dr Christopher M. Byrne
for the preparation of oxazoline starting materials and
Dr Sze-Sze Ng for helpful discussions.
17 We believe hydroformylation of the enamide formed after
b-hydride elimination from A (vide infra) is the source of the
branched isomer.
18 R. F. Heck and D. S. Breslow, J. Am. Chem. Soc., 1961, 83,
4023–4027.
19 See for example the Pictet–Spengler reaction: E. D. Cox and
J. M. Cook, Chem. Rev., 1995, 95, 1797–1842.
Notes and references
1 (a) F. Matsuura, Y. Hamada and T. Shioiri, Tetrahedron, 1994, 50,
9457–9470; (b) M. Rodriguez, A. Aumelas and J. Martinez, Tetrahedron
20 J. M. Bobbit, C. L. Kulkarni, C. P. Dutta, H. Kofod and
K. N. Chiong, J. Org. Chem., 1978, 43, 3541–3544.
Lett., 1990, 31, 5153–5156; (c) M. Llinares, C. Devin, J. Azay, G. Berge
´
J. A. Fehrentz and J. Martinez, Eur. J. Med. Chem., 1997, 32, 767–780.
,
21 I. Wender, H. Greenfield, S. Metlin and M. Orchin, J. Am. Chem.
Soc., 1952, 74, 4079–4083.
¨
2 Selected examples: (a) H. U. Kaniskan and P. Garner, J. Am.
Chem. Soc., 2007, 129, 15460–15461; (b) M. Nazare and
H. Waldmann, Tetrahedron Lett., 2000, 41, 625–628.
22 T. Ishizuka, T. Matsui, Y. Okamoto, A. Ohta and M. Shichijo,
Cardiovasc. Drug Rev., 2004, 22, 71–90.
23 S. E. Easthope and K. L. Goa, CNS Drugs, 2001, 15, 969–976.
´
ꢀc
This journal is The Royal Society of Chemistry 2009
5706 | Chem. Commun., 2009, 5704–5706