Table 4 Comparison of stability constants (log b011) of the [M(L)] com-
7 (a) R. B. Wilder, G. L. DeNardo and S. J. DeNardo, J. Clin.
Oncol., 1996, 14, 1383–1400; (b) I. Novak-Hofer and P. A. Schubiger,
Eur. J. Nucl. Med. Mol. Imaging, 2002, 29, 821–830; (c) S. V. Smith,
J. Inorg. Biochem., 2004, 98, 1874–1901; (d) X. Sun and C. J. Anderson,
Methods Enzymol., 2004, 386, 237–261; (e) T. J. Wadas, E. H. Wong,
G. R. Weisman and C. J. Anderson, Curr. Pharm. Des., 2007, 13, 3–16.
8 M. K. Moi, C. F. Meares, M. J. McCall, W. C. Cole and S. J. DeNardo,
Anal. Biochem., 1985, 148, 249–253.
9 (a) A. Riesen, M. Zehnder and T. A. Kaden, Acta Crystallogr., Sect.
C: Cryst. Struct. Commun., 1988, 44, 1740–1742; (b) E. Espinosa, M.
Meyer, D. Berard and R. Guilard, Acta Crystallogr., Sect. C: Cryst.
Struct. Commun., 2002, 58, m119-m121; (c) J. D. Silversides, C. C.
Allan and S. J. Archibald, Dalton Trans., 2007, 971–978.
plex species formed with H4te2p1,4 and related ligands
Ligand
Ni(II)
Zn(II) Cd(II) Pb(II)
Ca(II) Cu(II)
pCua
H4te2p1,4
H4te2p1,8
H2te1pc
Cyclamd
H4tetad
H8tetp
21.92
21.99
—
22.2
19.91
—
20.16
20.35
21.03
15.2
17.03
17.89
15.91
11.3
12.85
14.96
—
10.9
14.3
15.5e
3.45
5.26
3.07
—
8.42
—
27.21
25.40
27.34
28.1
9.4
8.1
10.1
11.9
9.1
b
16.62
18.25
21.74
17.6e
16.7e
25.99f
8.4
a Calculated for -log [H+] = 7.4 and cL = cM = 0.004 M. b Ref. 23, 45.
c Ref. 21. d Ref. 47. e Ref. 48. f Ref. 41b.
10 L. A. Bass, M. Wang, M. J. Welch and C. J. Anderson, Bioconjugate
Chem., 2000, 11, 527–532.
11 (a) F. I. Belskii, Y. M. Polikarpov and M. I. Kabachnik, Usp. Khim.,
1992, 61, 415–455; (b) C. F. G. C. Geraldes, M. P. M. Marques, B. de
Castro and E. Pereira, Eur. J. Inorg. Chem., 2000, 559–565; (c) X. Sun,
M. Wuest, Z. Kovacs, A. D. Sherry, R. Motekaitis, Z. Wang, A. E.
Martell, M. J. Welch and C. J. Anderson, JBIC, J. Biol. Inorg. Chem.,
2003, 8, 217–225.
the lower pCu values for the phosphorus-containing ligands are
mainly given by the very high overall basicity of the ligands. The
kinetics of complex formation and dissociation is under study.
12 (a) I. La´za´r, A. D. Sherry, R. Ramasamy, E. Bru¨cher and R. Kiraly,
Inorg. Chem., 1991, 30, 5016–5019; (b) K. Bazakas and I. Lukesˇ,
J. Chem. Soc., Dalton Trans., 1995, 1133–1137; (c) J. Rohovec, M.
Ky´vala, P. Vojt´ısˇek, P. Hermann and I. Lukesˇ, Eur. J. Inorg. Chem.,
2000, 195–203; (d) P. Lubal, M. Ky´vala, P. Hermann, J. Holubova´, J.
Rohovec, J. Havel and I. Lukesˇ, Polyhedron, 2001, 20, 47–55.
13 (a) E. K. Barefield and F. Wagner, Inorg. Chem., 1973, 12, 2435–2439;
(b) L. Hertli and T. A. Kaden, Helv. Chim. Acta, 1974, 57, 1328–1333.
14 (a) M. Studer and T. A. Kaden, Helv. Chim. Acta, 1986, 69, 2081–2086;
(b) D. Tschudin, A. Basal and T. A. Kaden, Helv. Chim. Acta, 1988, 71,
100–106.
Conclusions
The title ligand, H4te2p1,4, forms extremely stable complex with
Cu(II) (log b(CuL) = 27.21) with a high selectivity of complexation
over other metal ions (e.g. log b(ZnL) = 20.16, log b(NiL) = 21.92).
The complexation of copper(II) proceeds relatively fast as it could
be determined by conventional potentiometric titration. It makes
the ligand promising as the parent chelator for possible radiophar-
maceutical applications. The ligand forms octahedral trans-O,O
Ni(II) complexes with the most stable macrocycle configuration III.
From acid solution, the crystals of trans-O,O-[Ni(H3L)]Cl·H2O
were isolated with mono- and double-protonated phosphonate
pendant arms. The isolation of such species points to a high
inertness of the complex. From neutral solutions, the crystals of
{trans-O,O-[Ni(H2L)]}3·5H2O were isolated where each pendant
arm is monoprotonated.
15 D. Tschudin, A. Riesen and T. A. Kaden, Helv. Chim. Acta, 1989, 72,
313–319.
16 (a) I. M. Helps, D. Parker, J. Chapman and G. Ferguson, J. Chem. Soc.,
Chem. Commun., 1988, 1094–1095; (b) J. Chapman, G. Ferguson, J. F.
Gallagher, M. C. Jennings and D. Parker, J. Chem. Soc., Dalton Trans.,
1992, 345–353.
17 (a) A. Comparone and T. A. Kaden, Helv. Chim. Acta, 1998, 81, 1765–
1772; (b) L. Siegfried, A. Comparone, M. Neuburger and T. A. Kaden,
Dalton Trans., 2005, 30–36.
18 C. Bucher, E. Duval, J.-M. Barbe, J.-N. Verpeaux, C. Amatore and R.
Guilard, C. R. Acad. Sci., Ser. IIc: Chim., 2000, 3, 211–222.
19 (a) A. E. Goeta, J. A. K. Howard, D. Maffeo, H. Puschmann, J. A. G.
Williams and D. S. Yufit, J. Chem. Soc., Dalton Trans., 2000, 1873–
1880; (b) A. S. Batsanov, A. E. Goeta, J. A. K. Howard, D. Maffeo, H.
Puschmann and J. A. G. Williams, Polyhedron, 2001, 20, 981–986.
20 H. Kurosaki, C. Bucher, E. Espinosa, J.-M. Barbe and R. Guilard,
Inorg. Chim. Acta, 2001, 322, 145–149.
Acknowledgements
This work was supported by the Grant Agency of the Czech
Republic (203/06/0467), the Ministry of Education and Youth
of Czech Republic (MSM0021620857) and COST D38.
21 S. Fu¨zerova´, J. Kotek, I. C´ısarˇova´, P. Hermann, K. Binnemans and I.
Lukesˇ, Dalton Trans., 2005, 2908–2915.
22 J. Kotek, P. Vojt´ısˇek, I. C´ısarˇova´, P. Hermann, P. Jurecˇka, J. Rohovec
and I. Lukesˇ, Collect. Czech. Chem. Commun., 2000, 65, 1289–1316.
23 J. Kotek, P. Lubal, P. Hermann, I. C´ısarˇova´, I. Lukesˇ, T. Godula, I.
Svobodova´, P. Ta´borsky´ and J. Havel, Chem.–Eur. J., 2003, 9, 233–248.
24 (a) I. Svobodova´, P. Lubal, P. Hermann, J. Kotek and J. Havel,
Microchim. Acta, 2004, 148, 21–26; (b) I. Svobodova´, P. Lubal, P.
Hermann, J. Kotek and J. Havel, J. Inclusion Phenom. Macrocyclic
Chem., 2004, 49, 11–15.
Notes and references
1 (a) A. E. Martell and R. D. Hancock, Metal Complexes in Aqueous
Solutions, Plenum Press, New York, 1996; (b) K. P. Wainwright, Coord.
Chem. Rev., 1997, 166, 35–90; (c) S. F. Lincoln, Coord. Chem. Rev.,
1997, 166, 255–289; (d) L. F. Lindoy, Adv. Inorg. Chem., 1998, 45, 75–
125; (e) R. Delgado, V. Fe´lix, L. M. P. Lima and D. W. Price, Dalton
Trans., 2007, 2734–2745.
25 T. Vitha, J. Kotek, J. Rudovsky´, V. Kub´ıcˇek, I. C´ısarˇova´, P. Hermann
and I. Lukesˇ, Collect. Czech. Chem. Commun., 2006, 71, 337–367.
26 F. Bellouard, F. Chuburu, N. Kervarec, L. Toupet, S. Triki, Y. LeMest
and H. Handel, J. Chem. Soc., Perkin Trans. 1, 1999, 3499–3505.
27 (a) E. K. Barefield, Inorg. Chem., 1972, 11, 2273–2274; (b) I. Meunier,
A. K. Mishra, B. Hanquet, P. Cocolios and R. Guilard, Can. J. Chem.,
1995, 73, 685–695.
28 (a) Z. Otwinovski and W. Minor, HKL Denzo and Scalepack Program
Package, Nonius BV, Delft, 1997; (b) Z. Otwinovski and W. Minor,
Methods Enzymol., 1997, 276, 307–326.
29 A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo,
A. Guagliardi and G. Polidori, J. Appl. Crystallogr., 1994, 27, 435.
30 G. M. Sheldrick, SHELXL-97, Program for refinement of crystal
structures, University of Go¨ttingen, Germany, 1997.
31 P. Coppens, in Crystallographic Computing, ed. F. R. Ahmed, S. R. Hall
and C. P. Huber, Munksgaard, Copenhagen, 1970, pp. 255–270.
2 M. Meyer, V. Dahaoui-Ginderey, C. Lecomte and R. Guilard, Coord.
Chem. Rev., 1998, 178–180, 1313–1405.
3 X. Liang and P. J. Sadler, Chem. Soc. Rev., 2004, 33, 246–266.
4 E. De Clercq, Nat. Rev. Drug Discovery, 2003, 2, 581–587.
5 (a) G. J. Bridger and R. T. Skerlj, Adv. Antiviral Drug Des., 1999, 3,
161–229; (b) X. Liang, J. A. Parkinson, M. Weishaupl, R. O. Gould,
S. J. Paisey, H. S. Park, T. M. Hunter, C. A. Blindauer, S. Parsons and
P. J. Sadler, J. Am. Chem. Soc., 2002, 124, 9105–9112; (c) L. O. Gerlach,
J. S. Jakobsen, K. P. Jensen, M. R. Rosenkilde, R. T. Skerlj, U. Ryde,
G. J. Bridger and T. W. Schwartz, Biochemistry, 2003, 42, 710–717.
6 (a) S. Liu and D. S. Edwards, Bioconjugate Chem., 2001, 12, 7–
34; (b) S. Liu and D. S. Edwards, Top. Curr. Chem., 2002, 222,
259–278; (c) Handbook of Radiopharmaceuticals. Radiochemistry and
Applications, ed. M. J. Welch and C. S. Redvanly, Wiley, Chichester,
UK, 2003; (d) S. Liu, Chem. Soc. Rev., 2004, 33, 445–461; (e) W. P. Li,
L. A. Meyer and C. J. Anderson, Top. Curr. Chem., 2005, 252, 179–192.
This journal is
The Royal Society of Chemistry 2008
Dalton Trans., 2008, 5378–5386 | 5385
©