Tautomerism of 2-Quinolinones
= 8.3 Hz, l H), 7.67 (d, J = 8.1 Hz, 1 H), 7.64 (d, J = 10.3 Hz, 1
H), 7.59 (t, J = 7.5 Hz, 1 H), 7.41 (t, J = 7.5 Hz, 1 H), 4.16 (s, 3
8.3 Hz, 1 H), 7.28 (t, J = 8.3 Hz, 1 H), 7.17 (t, J = 7.7 Hz, 1 H),
6.95 (d, J = 7.7 Hz, 1 H), 6.88 (d, J = 17.9 Hz, 1 H), 3.75 (s, 3 H),
H) ppm. 19F NMR: δ = –138.6 (d, J = 10.4 Hz). 13C NMR: δ = 3.20 (s, 3 H), 1.38 (s, 9 H) ppm. 19F NMR: δ = –147.3 (d, J =
153.1 (d, J = 13.8 Hz, 1 C), 147.7 (d, J = 263 Hz, 1 C), 142.7 (s, 1 17.9 Hz) ppm. C15H20FNO2 (265.33): calcd. C 67.90, H 7.60; found
C), 128.5 (s, 1 C), 127.0 (s, 1 C), 126.9 (d, J = 4.8 Hz, 1 C), 125.4 C 67.64, H 7.86]. The viscous liquid (6.6 g, 25 mmol) was heated
(d, J = 3.5 Hz, 1 C), 124.9 (s, 1 C), 119.3 (d, J = 14.8 Hz, 1 C),
53.9 (s, 1 C) ppm. C10H8FNO (177.18): calcd. C 67.79, H 4.55;
found C 67.85, H 4.66. Quinolinone 9a: Colorless needles; m.p. 111–
with 70% (approx. 12 ) aqueous sulfuric acid (50 mL) for 5 h to
60 °C. The mixture was poured into ice/water, neutralized with so-
lid sodium hydrogen carbonate and extracted with ethyl acetate
112 °C; yield 2.2 g (62%). 1H NMR: δ = 7.58 (ddd, J ≈ 8.5, 1.6, (3ϫ0.25 L). The combined organic layers were dried and the sol-
0.6 Hz, 1 H), 7.55 (d, J = 7.6 Hz, 1 H), 7.42 (d, J = 9.1 Hz, 1 H), vents evaporated. The residue was purified by chromatography on
7.39 (d, J = 8.3 Hz, 1 H), 7.29 (t, J = 7.7 Hz, 1 H), 3.79 (s, 3 H)
silica gel (0.25 L) using a 1:9 (v/v) mixture of ethyl acetate and
hexanes as the eluent; colorless needles; m.p. 126–127 °C (after sub-
ppm. 19F NMR: δ = –128.9 (d, J = 9.0 Hz) ppm. 13C NMR: δ =
156.4 (d, J = 26.4 Hz, 1 C), 150.6 (d, J = 252 Hz, 1 C), 137.0 (s, 1 limation); yield 2.6 g (37%; 45% with respect to the amide interme-
C), 129.7 (d, J = 2.9 Hz, 1 C), 128.4 (d, J = 5.9 Hz, 1 C), 123.1 (s,
1 C), 118.8 (d, J = 8.1 Hz, 1 C), 118.0 (d, J = 16.8 Hz, 1 C), 114.3
(d, J = 1.5 Hz, 1 C), 29.9 (s, 1 C) ppm. C10H8FNO (177.18): calcd.
C 67.79, H 4.55; found C 67.85, H 4.63.
diate). 1H NMR: δ = 7.67 (dm, J = 7.5 Hz, 1 H), 7.3 (m, 2 H),
7.19 (t, J = 7.5 Hz, 1 H), 3.72 (s, 3 H), 1.50 (s, 9 H) ppm. 19F
NMR: δ = –132.2 (d, J = 8.8 Hz) ppm. 13C NMR: δ = 159.6 (d, J
= 26.4 Hz, 1 C), 149.7 (d, J = 255 Hz, 1 C), 139.8 (s, 1 C), 139.2
(s, 1 C), 131.5 (d, J = 2.9 Hz, 1 C), 125.8 (d, J = 5.9 Hz, 1 C),
123.1 (s, 1 C), 121.9 (d, J = 5.9 Hz, 1 C), 118.9 (d, J = 16.8 Hz, 1
C), 43.8 (d, J = 1.5 Hz, 1 C), 36.9 (s, 1 C), 32.6 (s, 3 C) ppm.
C14H16FNO (233.28): calcd. C 72.08, H 6.91; found C 72.20, H
6.91.
3,8-Difluoro-2-methoxyquinoline (8b) and 3,8-Difluoro-l-methyl-
2(1H)-quinolinone (9b): An analogous reaction with 3,8-difluoro-
2(1H)-quinolinone (1b; 4.0 g, 20 mmol) also afforded a mixture of
regioisomers which were separated again by chromatography. Quin-
oline 8b: Colorless prisms; m.p. 89–91 °C; yield 0.60 g (15%). 1H
NMR: δ = 7.67 (dd, J = 10.3, 1.7 Hz, 1 H), 7.47 (dd, J ≈ 8.5,
2.0 Hz, 1 H), 7.3 (m, 2 H), 4.21 (s, 3 H) ppm. 19F NMR: –126.5
(m), –136.8 (dd, J = 10.3, 3.4 Hz). 13C NMR: δ = 156.8 (d, J =
255 Hz, 1 C), 153.3 (d, J = 14.4 Hz, 1 C), 147.7 (d, J = 264 Hz, 1
C), 132.4 (dd, J = 11.9, 3.1 Hz, 1 C), 127.4 (dd, J = 4.1, 2.2 Hz, 1
C), 124.9 (d, J = 8.2 Hz, 1 C), 122.4 (t, J = 4.7 Hz, 1 C), 119.2 (dd,
J = 15.1, 2.5 Hz, 1 C), 113.3 (dd, J = 19.5, 2.5 Hz, 1 C), 54.2 (s, 1
C) ppm. C10H7F2NO (195.17): calcd. C 61.54, H 3.61; found C
61.76, H 4.05. Quinolinone 9b: Colorless needles; m.p. 144–145 °C;
Acknowledgments
This work was supported by the Schweizerische Nationalfonds zur
Förderung der wissenschaftlichen Forschung, Bern (grants 20-
49Ј307-96, 20-55Ј303-98 and 20-100Ј336-00). The authors are
obliged to Mr. Björn Wagner, Dr. Manfred Kansy and Prof. Klaus
Müller, all from Hoffmann-La Roche (Basel, Switzerland) for the
reported pKa measurements.
1
yield 3.0 g (77%). H NMR: δ = 7.38 (dd, J = 8.7, 1.2 Hz, 1 H),
7.15–7.35 (m, 3 H), 3.84 (d, J = 8.4 Hz, 3 H) ppm. 19F NMR: δ =
–121.6 (m), –127.0 (dd, J = 8.6, 2.4 Hz) ppm. 13C NMR: δ = 156.6
(d, J = 26.4 Hz, 1 C), 150.7 (d, J = 254 Hz, 1 C), 150.1 (d, J =
247 Hz, 1 C), 126.1 (d, J = 7.5 Hz, 1 C), 124.3 (dd, J = 6.3, 3.8 Hz,
1 C), 123.4 (d, J = 8.8 Hz, 1 C), 121.3 (dd, J = 7.5, 3.1 Hz, 1 C),
117.7 (dd, J = 17.6, 3.1 Hz, 1 C), 117.0 (dd, J = 23.9, 3.1 Hz, 1 C),
33.6 (dd, J = 15.7, 1.3 Hz, 1 C) ppm. C10H7F2NO (195.17): calcd.
C 61.54, H 3.61; found C 61.73, H 3.92.
[1] H. Rappoport (Ed.), The Chemistry of Enols, Wiley, New York,
1990.
[2] J. Hine, A. Kazushi, Bull. Chem. Soc. Jpn. 1976, 49, 3089–3092.
[3] E. Tapuhi, W. P. Jencks, J. Am. Chem. Soc. 1982, 104, 5758–
5765.
[4] A. J. Kresge, Acc. Chem. Res. 1990, 23, 43–48.
[5] H. Hart, Chem. Rev. 1979, 79, 515–528.
[6] F. Arndt, B. Eistert, Ber. Dtsch. Chem. Ges. 1938, 71, 2040–
2049.
8-tert-Butyl-3-fluoromethoxyquinolinone (8h): The consecutive
treatment of 8-tert-butyl-3-fluoro-2(1H)-quinolinone (1h; 4.4 g,
20 mmol) with potassium hydride and dimethyl sulfate, analo-
gously as described in the two preceding paragraphs, gave a single
product; colorless prisms; m.p. 86–87 °C; yield 4.2 g (90%). 1H
NMR: δ = 7.62 (d, J = 10.5 Hz, 1 H), 7.58 (d, J = 7.8 Hz, 1 H),
7.54 (d, J = 7.8 Hz, 1 H), 7.33 (t, J = 7.8 Hz, 1 H), 4.17 (s, 3 H),
[7] B. Eistert, Tautomerie und Mesomerie, Enke Verlag, Stuttgart,
1938.
[8] C. K. Ingold, Structure and Mechanism in Organic Chemistry,
Cornell Press, Ithaca, New York, 1953, 530–575.
[9] S. Forsén, M. Nilsson, in The Chemistry of the Carbonyl Group
(Ed.: J. Zabicky), vol. 2, Wiley-Interscience, New York, 1970,
157–240.
[10] M. Lasne, J. Ripoll, J. Denis, Tetrahedron Lett. 1980, 21, 463–
1.65 (s, 9 H) ppm. 19F NMR: δ = –140.4 (d, J = 10.5 Hz) ppm. 13
C
464.
NMR: δ = 150.2 (d, J = 13.2 Hz, 1 C), 146.1 (d, J = 263 Hz, 1 C),
145.9 (s, 1 C), 141.1 (d, J = 3.7 Hz, 1 C), 126.9 (d, J = 2.9 Hz, 1
C), 125.7 (d, J = 4.4 Hz, 1 C), 125.6 (d, J = 2.2 Hz, 1 C), 124.7 (s,
1 C), 120.1 (d, J = 13.9 Hz, 1 C), 54.3 (s, 1 C), 36.1 (s, 1 C), 30.4
(s, 3 C) ppm. C14H16FNO (233.28): calcd. C 72.08, H 6.91; found
C 71.96, H 6.98.
[11] C. Krebs, W. Förster, C. Weiss, H. J. Hofmann, J. Prakt. Chem.
1982, 324, 369–378.
[12] C. W. Bird, Tetrahedron 1992, 48, 7587–7862.
[13] O. G. Parchment, N. A. Burton, I. H. Hillier, M. A. Vincent, J.
Chem. Soc. Perkin Trans. 2 1993, 861–863.
[14] L. D. Hatherley, R. D. Brown, P. D. Godfrey, A. P. Pierlot, W.
Caminati, D. Damiani, S. Melandri, L. B. Favero, J. Phys.
Chem. 1993, 97, 46–51.
[15] R. Sanchez, B. M. Giuliano, S. Melandri, W. Caminati, Chem.
Phys. Lett. 2006, 425, 6–9.
[16] B. Stanovnik, M. Tisler, A. R. Katritzky, O. V. Denisko, Adv.
Heterocycl. Chem. 2006, 91, 1–134.
[17] G. Pfister-Guillouzo, C. Guimon, J. Frank, J. Ellison, A. R.
Katritzky, Liebigs Ann. Chem. 1981, 366–375.
[18] M. R. Nimlos, D. F. Kelley, E. R. Bernstein, J. Phys. Chem.
1987, 91, 6610–6614.
8-tert-Butyl-3-fluoro-1-methyl-2(1H)-quinolinone (9h): At 0 °C, po-
tassium hydride (1.2 g, 30 mmol), followed 30 min later by 2-fluoro-
3-methoxyacryloyl chloride[63] (4.1 g, 30 mmol) was added to a vig-
orously stirred solution of 2-tert-butyl-N-methylaniline[90] (2.1 g,
30 mmol) in tetrahydrofuran (60 mL). The intermediate N-2-tert-
butylphenyl-2-fluoro-3-methoxy-N-methyl-2-propenamide was iso-
lated by distillation under reduced pressure [yellowish oil; b.p. 130–
131 °C/0.1 Torr; yield 6.7 g (84%). 1H NMR: δ = 7.50 (d, J =
Eur. J. Org. Chem. 2008, 2430–2438
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2437