C O M M U N I C A T I O N S
of Basic Energy Sciences, Division of Materials Sciences and
Engineering, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
Supporting Information Available: Experimental procedures and
figures, a chart, and a table. This material is available free of charge
References
(1) (a) Mitchison, T. J.; Sawin, K. E.; Theriot, J. A.; Gee, K.; Mallavarapu, A.
Methods Enzymol. 1998, 291, 63–78. (b) Ando, R.; Hama, H.; Yamamoto-
Hino, M.; Mizuno, H.; Miyawaki, A. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 12651–12656.
(2) Patterson, G. H.; Lippincott-Schwartz, J. Science 2002, 297, 1873–1877.
(3) (a) Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych,
S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F.
Science 2006, 313, 1642–1645. (b) Moerner, W. E. Proc. Natl. Acad. Sci.
U.S.A. 2007, 104, 12596–12602. (c) Hell, S. W. Science 2007, 316, 1153–
1158. (d) Rust, M. J.; Bates, M.; Zhuang, X. W. Nat. Methods 2006, 3,
793–795.
(4) Shroff, H.; Galbraith, C. G.; Galbraith, J. A.; White, H.; Gillette, J.; Olenych,
S.; Davidson, M. W.; Betzig, E. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
20308–20313.
(5) Mayer, G.; Heckel, A. Angew. Chem., Int. Ed. 2006, 45, 4900–4921.
(6) Mccray, J. A.; Trentham, D. R. Annu. ReV. Biophys. Biol. 1989, 18, 239–
270.
(7) Clarke, S. J.; Hollmann, C. A.; Zhang, Z. J.; Suffern, D.; Bradforth, S. E.;
Dimitrijevic, N. M.; Minarik, W. G.; Nadeau, J. L. Nat. Mater. 2006, 5,
409–417.
(8) (a) Yiidiz, I.; Tomasulo, M.; Raymo, F. M. Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 11457–11460. (b) Huang, H.; Dorn, A.; Nair, G. P.; Bulovic,
V.; Bawendi, M. G. Nano Lett. 2007, 7, 3781–3786. (c) Huang, J.;
Stockwell, D.; Huang, Z.; Mohler, D. L.; Lian, T. Q. J. Am. Chem. Soc.
2008, 130, 5632–5633.
(9) Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.;
Kornowski, A.; Eychmuller, A.; Weller, H. J. Phys. Chem. B 2002, 106,
7177–7185.
(10) Peng, H.; Zhang, L. J.; Soeller, C.; Travas-Sejdic, J. J. Lumin. 2007, 127,
721–726.
(11) Clapp, A. R.; Goldman, E. R.; Mattoussi, H. Nat. Protoc. 2006, 1, 1258–
1266.
Figure 4. Live-cell imaging of QD uncaging. (a) Brightfield image of NIH
3T3 fibroblasts incubated with green CdTe/CdS QDs coated with 10% ligand
3. Luminescent images of cells (b) before and (c) after photolysis with 387-
nm light. (d) Brightfield, (e) prephotolysis, and (f) postphotolysis images
of cells not incubated with caged QDs, irradiated, imaged, and processed
identically with (a)-(c). Scale bar is 10 µm
ligand 3 with murine fibroblasts (Figure 4), which have previously
been shown to endocytose QDs.19 The remaining surface ligand
was a mixture of positive and negative charges (compounds 6 (Chart
S1) and 4, respectively), which has been shown to minimize
nonspecific QD adhesion to cell surfaces.15 Before UV irradiation,
little luminescence above cellular autofluorescence is visible
(compare Figures 4b and 4e). Photolysis through the objective using
the microscope Xe lamp and a 387-nm DAPI filter leads to a
dramatic increase in perinuclear luminescence in cells with en-
docytosed caged QDs (Figure 4c), but not control cells (Figure 4f).
Following uncaging, cells show no apparent changes in morphology,
loss of adhesion, or other signs of toxicity from the photolysis or
uncaging byproduct.
In summary, we have endowed quantum dots with one of the
more useful properties of bioimaging probes: the ability to be
switched on with light. The ONB caging group efficiently quenches
QD luminescence and can be released from the nanoparticle surface
with UV light. Caging is dependent on the emission of the QD but
is observed through the visible spectrum into the nIR, offering a
large array of new colors for photoactivatable probes. Like
photoactivatable organic and FP probes, caged QDs can confer
increased spatial and temporal resolution in biological imaging
experiments, with the superior optical properties of QDs.
(12) Wilcox, M.; Viola, R. W.; Johnson, K. W.; Billington, A. P.; Carpenter,
B. K.; Mccray, J. A.; Guzikowski, A. P.; Hess, G. P. J. Org. Chem. 1990,
55, 1585–1589.
(13) Based on the absorbance spectra in Figure 2a and literature values for the
extinction coefficients of DMNPE6 and CdTe QDs,14 we estimate that the
10% caged 520-nm QDs have an average of 8 DMNPE groups per QD
and the 25% caged QDs have 18, out of ca. 80 dithiolates per nanoparticle.
Based on empirical calculations relating absorbance to particle size,14 these
particles have a 2 nm diameter and, assuming a spherical particle, a 12
nm2 surface area. For 80 dithiolates, each will have a footprint of 0.15
nm2, a physically reasonable value.
(14) Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Chem. Mater. 2003, 15,
2854–2860.
(15) Liu, W.; Howarth, M.; Greytak, A. B.; Zheng, Y.; Nocera, D. G.; Ting,
A. Y.; Bawendi, M. G. J. Am. Chem. Soc. 2008, 130, 1274–1284.
(16) Certain imaging methods, such as PALM,3a also require that probes be
photobleached following activation and imaging. While QDs have been
shown to be more resistant to photobleaching than organic- and protein-
based probes, they do indeed photobleach. For example, see : (a) Ma, J.;
Chen, J. Y.; Zhang, Y.; Wang, P. N.; Guo, J.; Yang, W. L.; Wang, C. C.
J. Phys. Chem. B 2007, 111, 12012–12016.
(17) (a) Jasieniak, J.; Mulvaney, P. J. Am. Chem. Soc. 2007, 129, 2841–2848.
(b) Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V.; Kornowski, A.;
Haase, M.; Weller, H. J. Am. Chem. Soc. 2002, 124, 5782–5790.
(18) Jeong, S.; Achermann, M.; Nanda, J.; Lvanov, S.; Klimov, V. I.;
Hollingsworth, J. A. J. Am. Chem. Soc. 2005, 127, 10126–10127.
(19) (a) Duan, H. W.; Nie, S. M. J. Am. Chem. Soc. 2007, 129, 3333–3338. (b)
Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nat. Biotechnol.
2003, 21, 47–51.
Acknowledgment. We thank Tracy Mattox for technical support
and Carolyn Bertozzi, Brett Helms, Jim Schuck, and Ron Zuck-
ermann for comments on the manuscript. Work at the Molecular
Foundry was supported by the Director, Office of Science, Office
JA804948S
9
J. AM. CHEM. SOC. VOL. 130, NO. 47, 2008 15813