A R T I C L E S
Dunetz et al.
Scheme 1. Retrosynthetic Analysis of the Tedanolides
is incorporated into a ꢀ,γ-unsaturated ketone with the potential
to migrate into conjugation with the carbonyl. In addition,
tedanolide possesses a sensitive R-hydroxy trisubstituted epoxide
and four ꢀ-hydroxy ketone units that are potentially susceptible
to retro aldol decomposition. Total syntheses of tedanolide were
recently completed by Kalesse9a,b (2006) and Smith10a (2007);
a few years earlier, Smith10c,d (2003) and our group7 (2005)
reported total syntheses of 13-deoxytedanolide.
Results and Discussions
In planning our synthetic approach to tedanolide and 13-
deoxytedanolide, we initially envisioned that 4 would serve as
a common intermediate that would permit entry into both
macrolides (Scheme 1). We planned to assemble 4 from the
convergent aldol coupling of methyl ketone 5 and aldehyde 6,
which would establish the C(13)-alcohol stereochemistry of
tedanolide via Felkin addition of 5 to 6. We chose the (R)-
configuration for the C(15)-position of 6 after previous studies
from our group demonstrated that the lithium enolates of methyl
ketone models of 5 add to 2,3-anti aldehydes (e.g., 6) with
greater Felkin selectivity than additions to 2,3-syn aldehydes
(e.g., 39, vide infra).18 We envisaged that aldol 4 could be
converted to tedanolide via a sequence involving C(15)-
oxidation to the requisite carbonyl and macrolactonization. After
considerable experimentation,8b we decided to mask the C(1)-
(9) (a) Ehrlich, G.; Hassfeld, J.; Eggert, U.; Kalesse, M. Chem. Eur. J.
2008, 14, 2232. (b) Ehrlich, G.; Hassfeld, J.; Eggert, U.; Kalesse, M.
J. Am. Chem. Soc. 2006, 128, 14038. (c) Hassfeld, J.; Eggert, U.;
Kalesse, M. Synthesis 2005, 1183. (d) Ehrlich, G.; Kalesse, M. Synlett
2005, 655. (e) Hassfeld, J.; Kalesse, M. Synlett 2002, 2007.
(10) (a) Smith, A. B., III.; Lee, D. J. Am. Chem. Soc. 2007, 129, 10957.
(b) Cho, C.-G.; Kim, W.-S.; Smith, A. B., III. Org. Lett. 2005, 7,
3569. (c) Smith, A. B., III.; Adams, C. M.; Lodise Barbosa, S. A.;
Degnan, A. P. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12042. (d)
Smith, A. B., III.; Adams, C. M.; Lodise Barbosa, S. A.; Degnan,
A. P. J. Am. Chem. Soc. 2003, 125, 350. (e) Smith, A. B., III.; Lodise,
S. A. Org. Lett. 1999, 1, 1249.
acid in 5 as an allyl ester and the C(16)-hydroxymethyl group
in 6 as an allyl carbonate (Alloc), motivated by our desire to
remove both protection groups simultaneously prior to macro-
lactonization. We envisioned that aldol adduct 4 could also be
converted to 13-deoxytedanolide by using a similar sequence
that also included deoxygenation of the C(13)-alcohol.
(11) (a) Jung, M. E.; Zhang, T.-h. Org. Lett. 2008, 10, 137. (b) Jung, M. E.;
Yoo, D. Tetrahedron Lett. 2008, 49, 816. (c) Jung, M. E.; Yoo, D.
Org. Lett. 2007, 9, 3543. (d) Jung, M. E.; Lee, C. P. Org. Lett. 2001,
3, 333. (e) Jung, M. E.; Lee, C. P. Tetrahedron Lett. 2000, 41, 9719.
(f) Jung, M. E.; Marquez, R. Org. Lett. 2000, 2, 1669. (g) Jung, M. E.;
Marquez, R. Tetrahedron Lett. 1999, 40, 3129.
(12) (a) Wong, C.-M.; Loh, T.-P. Tetrahedron Lett. 2006, 47, 4485. (b)
Loh, T.-P.; Feng, L.-C. Tetrahedron Lett. 2001, 42, 6001. (c) Loh,
T.-P.; Feng, L.-C. Tetrahedron Lett. 2001, 42, 3223.
We developed a convergent route that assembles the
C(1)-C(12) ketone 5 via the aldol reaction of ethyl ketone 7
and aldehyde 8. The synthesis of ethyl ketone 7 began with
asymmetric hydrogenation19 of ꢀ-keto ester 9, followed by
alkylation of the ꢀ-hydroxy ester under Fra´ter conditions20 to
access the 2,3-anti ester 10 (Scheme 2). The hydroxyl group of
10 was protected as a DMPM ether in 11 through a sequence
involving ester reduction with LiAlH4, conversion of the 1,3-
diol to the 3,4-dimethoxybenzylidene acetal, and regioselective
acetal reductive opening with DIBAL. The primary alcohol of
11 was oxidized under Swern conditions,21 and the resulting
aldehyde was treated with 3 equiv of γ-siloxy allylstannane 1222a
and BF3-OEt2 in CH2Cl2 at -78 °C22b to afford the 3,4-syn-
4,5-syn-homoallylic alcohol with >95:5 diastereomeric ratio
(dr). Methylation of the alcohol (MeOTf, 2,6-di-tert-butyl-4-
(13) (a) Matsui, K.; Zheng, B.-Z.; Kusaka, S.-i.; Kuroda, M.; Yoshimoto,
K.; Yamada, H.; Yonemitsu, O. Eur. J. Org. Chem. 2001, 3615. (b)
Zheng, B.-Z.; Yamauchi, M.; Dei, H.; Kusaka, S.-i.; Matsui, K.;
Yonemitsu, O. Tetrahedron Lett. 2000, 41, 6441. (c) Matsushima, T.;
Nakajima, N.; Zheng, B.-Z.; Yonemitsu, O. Chem. Pharm. Bull. 2000,
48, 855. (d) Zheng, B.-Z.; Maeda, H.; Mori, M.; Kusaka, S.-i.;
Yonemitsu, O.; Matsushima, T.; Nakajima, N.; Uenishi, J.-i. Chem.
Pharm. Bull. 1999, 47, 1288. (e) Matsushima, T.; Mori, M.; Zheng,
B.-Z.; Maeda, H.; Nakajima, N.; Uenishi, J.-i.; Yonemitsu, O. Chem.
Pharm. Bull. 1999, 47, 308. (f) Matsushima, T.; Zheng, B.-Z.; Maeda,
H.; Nakajima, N.; Uenishi, J.-i.; Yonemitsu, O. Synlett 1999, 780. (g)
Matsushima, T.; Mori, M.; Nakajima, N.; Maeda, H.; Uenishi, J.-i.;
Yonemitsu, O. Chem. Pharm. Bull. 1998, 46, 1335. (h) Matsushima,
T.; Horita, K.; Nakajima, N.; Yonemitsu, O. Tetrahedron Lett. 1996,
37, 385.
(14) Liu, J.-F.; Abiko, A.; Pei, Z.; Buske, D. C.; Masamune, S. Tetrahedron
Lett. 1998, 39, 1873.
(15) Iwata, Y.; Tanino, K.; Miyashita, M. Org. Lett. 2005, 7, 2341.
(16) (a) Taylor, R. E.; Hearn, B. R.; Ciavarri, J. P. Org. Lett. 2002, 4,
2953. (b) Taylor, R. E.; Ciavarri, J. P.; Hearn, B. R. Tetrahedron Lett.
1998, 39, 9361.
(19) (a) Taber, D. F.; Silverberg, L. J. Tetrahedron Lett. 1991, 32, 4227.
For a review: (b) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed.
2001, 40, 40.
(17) (a) Nyavanandi, V. K.; Nadipalli, P.; Nanduri, S.; Naidu, A.; Iqbal, J.
Tetrahedron Lett. 2007, 48, 6905. (b) Nyavanandi, V. K.; Nanduri,
S.; Dev, R. V.; Naidu, A.; Iqbal, J. Tetrahedron Lett. 2006, 47, 6667.
(18) Gustin, D. J.; VanNieuwenhze, M. S.; Roush, W. R. Tetrahedron Lett.
1995, 36, 3443.
(20) Fra´ter, G.; Mu¨ller, U.; Gu¨nther, W. Tetrahedron 1984, 40, 1269.
(21) For a review: Mancuso, A. J.; Swern, D. Synthesis 1981, 165.
(22) (a) Keck, G. E.; Abbott, D. E.; Wiley, M. R. Tetrahedron Lett. 1987,
28, 139. (b) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G.
J. Am. Chem. Soc. 1996, 118, 4322.
9
16408 J. AM. CHEM. SOC. VOL. 130, NO. 48, 2008