SAR Studies of Aminobenzimidazoles
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 23 7633
(12) Galanakis, D.; Ganellin, C. R. Defining determinant molecular
properties for the blockade of the apamin-sensitive SKCa channel in
guinea-pig hepatocytes: the influence of polarizability and molecular
geometry. Bioorg. Med. Chem. Lett. 2004, 14, 4031–4035.
(13) Conejo-Garc´ıa, A.; Campos, J. M. Bis-quinolinium cyclophanes: highly
potent and selective non-peptidic blockers of the apamin-sensitive
Ca2+-activated K+ channel. Curr. Med. Chem. 2008, 15, 1305–1315.
(14) Dilly, S.; Graulich, A.; Farce, A.; Seutin, V.; Liegeois, J.-F.; Chavatte,
P. Identification of a pharmacophore of SKCa channel blockers. J.
Enzyme Inhib. Med. Chem. 2005, 20, 517–523.
(15) Galanakis, D.; Ganellin, C. R.; Chen, J.-Q.; Gunasekera, D.; Dunn,
P. M. Bis-quinolinium cyclophanes: toward a pharmacophore model
for the blockade of apamin-sensitive SKCa channels in sympathetic
neurons. Bioorg. Med. Chem. Lett. 2004, 14, 4231–4235.
with rat SK3 channels and using an extracellular solution containing
4 mM K+. In all whole-cell experiments the intracellular/pipette
solution contained Ca2+ buffered at 400 nM.
Molecular Biology. hSK3 was cloned from total human skeletal
muscle RNA as previously described.54 The hSK3 cDNA was
subcloned into the pNS3h vector. Mutated hSK3 was generated
using uracilated plasmid as template in a mutagenesis reaction in
which mutagenic oligonucleotides and T7 DNA polymerase were
used to introduce the mutations. An aliquot of the mutagenesis
reaction was transformed into E. coli XL1-Blue cells, and mutated
hSK3 were identified by the elimination of an Acc65I restriction
site. The sequence of the mutagenic oligonucleotide was as follows:
hSK3-AA, gtgaaaggtatcatgacgcgcaggccgtaactagtaacttt. The fidelity
of the construct was verified by sequencing. HEK293 cells were
transiently transfected using lipofectamin and standard trasnsfection
methods. Electrophysiological recordings were made 2-4 days after
transfection.
(16) Hougaard, C.; Eriksen, B. L.; Jørgensen, S.; Johansen, T. H.; Dyhring,
T.; Madsen, L. S.; Strøbæk, D.; Christophersen, P. Selective positive
modulation of the SK3 and SK2 subtypes of small conductance Ca2+
-
activated K+ channels. Br. J. Pharmacol. 2007, 151, 655–665.
(17) Strøbæk, D.; Hougaard, C.; Johansen, T. H.; Sørensen, U. S.; Nielsen,
E. Ø.; Nielsen, K. S.; Taylor, R. D. T.; Pedarzani, P.; Christophersen,
P. Inhibitory gating modulation of small conductance Ca2+-activated
K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-
1,2,3,4-tetrahydro-1-naphthylamine (NS8593) reduces afterhyperpo-
larizing current in hippocampal CA1 neurons. Mol. Pharmacol. 2006,
70, 1771–1782.
(18) Sørensen, U. S.; Teuber, L.; Peters, D.; Strøbæk, D.; Johansen, T. H.;
Nielsen, K. S.; Christophersen, P. Novel 2-Amino Benzimidazole
Derivatives and Their Use as Modulators of Small-Conductance
Calcium-Activated Potassium Channels. WO 2006/013210 A2, Febru-
ary 9, 2006.
(19) Rivara, M.; Zuliani, V.; Cocconcelli, G.; Morini, G.; Comini, M.;
Rivara, S.; Mor, M.; Bordi, F.; Barocelli, E.; Ballabeni, V.; Bertoni,
S.; Plazzi, P. V. Synthesis and biological evaluation of new non-
imidazole H3-receptor antagonists of the 2-aminobenzimidazole series.
Bioorg. Med. Chem. 2006, 14, 1413–1424.
(20) Ognyanov, V. I.; Balan, C.; Bannon, A. W.; Bo, Y.; Dominguez, C.;
Fotsch, C.; Gore, V. K.; Klionsky, L.; Ma, V. V.; Qian, Y.-X.; Tamir,
R.; Wang, X.; Xi, N.; Xu, S.; Zhu, D.; Gavva, N. R.; Treanor, J. J. S.;
Norman, M. H. Design of potent, orally available antagonists of the
transient receptor potential vanilloid 1. Structure-activity relationships
of 2-piperazin-1-yl-1H-benzimidazoles. J. Med. Chem. 2006, 49, 3719–
3742.
Acknowledgment. The authors thank Helle D. Rasmussen
and Tine Sparre for technical assistance with the chemical
syntheses. Jette Sonne, Anne S. Meincke, and Vibeke Meyland-
Smith are acknowledged for their assistance with patch clamp
experiments. Lene G. Larsen is acknowledged for technical
assistance with the construction of the apamin-insensitive hSK3,
and Susanne K. Hansen and Ulla Borberg are acknowledged
for conducting the apamin binding experiments.
1
Supporting Information Available: Experimental details, H
NMR data, and melting points for the compounds 22-29 and
31-47; table of combustion analysis data for all novel compounds,
14, 17, 18, 24-26, and 28-48. This material is available free of
References
(1) Wulff, H.; Kolski-Andreaco, A.; Sankaranarayanan, A.; Sabatier, J.-M.;
Shakkottai, V. Modulators of small- and intermediate-conductance
calcium-activated potassium channels and their therapeutic indications.
Curr. Med. Chem. 2007, 14, 1437–1457.
(21) Shao, B.; Huang, J.; Sun, Q.; Valenzano, K. J.; Schmid, L.; Nolan, S.
4-(2-Pyridyl)piperazine-1-benzimidazoles as potent TRPV1 antago-
nists. Bioorg. Med. Chem. Lett. 2005, 719–723.
(22) Seth, P. P.; Jefferson, E. A.; Risen, L. M; Osgood, S. A. Identification
of 2-aminobenzimidazole dimers as antibacterial agents. Bioorg. Med.
Chem. Lett. 2003, 13, 1669–1672.
(2) Blank, T.; Nijholt, I.; Kye, M.-J.; Spiess, J. Small conductance Ca2+
-
activated K+ channels as targets of CNS drug development. Curr.
Drug Targets: CNS Neurol. Disord. 2004, 3, 161–167.
(23) Hong, Y.; Senanayake, C. H.; Xiang, T.; Vandenbossche, C. P.;
Tanoury, G. J.; Bakale, R. P.; Wald, S. A. Remarkably selective
palladium-catalyzed amination process: rapid assembly of multiamino
based structures. Tetrahedron Lett. 1998, 39, 3121–3124.
(24) Barrett, I. C.; Kerr, M. A. The high-pressure SNAr reaction of N-p-
fluorobenzyl-2-chlorobenzimidazole with amines; an approach to
norastemizole and analogs. Tetrahedron Lett. 1999, 40, 2439–2442.
(25) Wang, X.; Bhatia, P. A.; Daanen, J. F.; Latsaw, S. P.; Rohde, J.;
Kolasa, T.; Hakeem, A. A.; Matulenko, M. A.; Nakane, M.; Uchic,
M. E.; Miller, L. N.; Chang, R.; Moreland, R. B.; Brioni, J. D.; Stewart,
A. O. Synthesis and evaluation of 3-aryl piperidine analogs as potent
and efficacious dopamine D4 receptor agonists. Bioorg. Med. Chem.
2005, 13, 4667–4678.
(26) Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. Scope and mechanism
of palladium-catalyzed amination of five-membered heterocyclic
halides. J. Org. Chem. 2003, 68, 2861–2873.
(27) Hong, Y.; Tanoury, G. J.; Wilkinson, H. S.; Bakale, R. P.; Wald, S. A.;
Senanayake, C. H. Palladium catalyzed amination of 2-chloro-1,3-
azole derivatives: mild entry to potent H1-antihistaminic norastemizole.
Tetrahedron Lett. 1997, 38, 5607–5610.
(28) Pagano, M. A.; rzejewska, M.; Ruzzene, M.; Sarno, S.; Cesaro, L.;
Bain, J.; Elliott, M.; Meggio, F.; Kazimierczuk, Z.; Pinna, L. A.
Optimization of protein kinase CK2 inhibitors derived from 4,5,6,7-
tetrabromobenzimidazole. J. Med. Chem. 2004, 47, 6239–6247.
(29) Bierer, D. E.; O’Connell, J. F.; Parquette, J. R.; Thompson, C. M.;
Rapoport, H. Regiospecific synthesis of the aminoimidazoquinoxaline
(IQx) mutagens from cooked foods. J. Org. Chem. 1992, 57, 1390–
1405.
(30) Senanayake, C. H.; Hong, Y.; Xiang, T.; Wilkinson, H. S.; Bakale,
R. P.; Jurgens, A. R.; Pippert, M. F.; Butler, H. T.; Wald, S. A.
Properly tuned first fluoride-catalyzed TGME-mediated amination
process for chloroimidazoles: inexpensive technology for antihistaminic
norastemizole. Tetrahedron Lett. 1999, 40, 6875–6879.
(3) Lie´geois, J.-F.; Mercier, F.; Graulich, A.; Graulich-Lorge, F.; Scuve´e-
Moreau, J.; Seutin, V. Modulation of small conductance calcium-
activated potassium (SK) channels: a new challenge in medicinal
chemistry. Curr. Med. Chem. 2003, 10, 625–647.
(4) Xia, X.-M.; Fakler, B.; Rivard, A.; Wayman, G.; Johnson-Pais, T.;
Keen, J. E.; Ishii, T.; Hirschberg, B.; Bond, C. T.; Lutsenko, S.; Maylie,
J.; Adelman, J. P. Mechanism of calcium gating in small-conductance
calcium-activated potassium channels. Nature 1998, 395, 503–507.
(5) Allen, D.; Fakler, B.; Maylie, J.; Adelman, J. P. Organization and
regulation of small conductance Ca2+-activated K+ channel multi-
protein complexes. J. Neurosci. 2007, 27, 2369–2376.
(6) Jacobsen, J. P. R.; Weikop, P.; Hansen, H. H.; Mikkelsen, J. D.;
Redrobe, J. P.; Holst, D.; Bond, C. T.; Adelman, J. P.; Christophersen,
P.; Mirza, N. SK3 K+ channel deficient mice have enhanced dopamine
and serotonin release and altered emotional behaviors. Genes Brain
BehaV., in press.
(7) Wulff, H.; Zhorov, B. S. K+ channel modulators for the treatment of
neurological disorders and autoimmune diseases. Chem. ReV. 2008,
108, 1744–1773.
(8) Ko¨hler, M.; Hirschberg, B.; Bond, C. T.; Kinzie, J. M.; Marrion, N. V.;
Maylie, J.; Adelman, J. P. Small-conductance, calcium-activated
potassium channels from mammalian brain. Science 1996, 273, 1709–
1714.
(9) Sailor, C. A.; Kaufmann, W. A.; Marksteiner, J.; Knaus, H.-G.
Comparative immunohistochemical distribution of three small-
conductance Ca2+-activated potassium channel subunits, SK1, SK2,
and SK3 in mouse brain. Mol. Cell. Neurosci. 2004, 26, 458–469.
(10) Ishii, T. M.; Maylie, J.; Adelman, J. P. Determinants of apamin and
d-tubocurarine block in SK potassium channels. J. Biol. Chem. 1997,
37, 23195–23200.
(11) Chen, J.-Q.; Galanakis, D.; Ganellin, C. R.; Dunn, P. M.; Jenkinson,
D. H. Bis-quinolinium cyclophanes: 8,14-diaza-1,7(1, 4)-diquinoli-
nacyclotetradecaphane (UCL 1848), a highly potent and selective,
nonpeptidic blocker of the apamin-sensitive Ca2+-activated K+
channel. J. Med. Chem. 2000, 43, 3478–3481.
(31) Mor, M.; Bordi, F.; Silva, C.; Rivara, S.; Zuliani, V.; Vacondio, F.;
Rivara, M.; Barocelli, E.; Bertoni, S.; Ballabeni, V.; Magnanini, F.;