7048 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 22
Supporting Information Available: Typical experimental pro-
Letters
diastereomers via stereodivergent [3 + 2]-annulation reactions. Org.
Lett. 2008, 10, 3371–3374. (b) Marshall, J. A.; Sabatini, J. J.;
Valeriote, F. ABC synthesis and antitumor activity of a series of
Annonaceous acetogenin analogs with a threo, trans, threo, trans,
threo-bis-tetrahydrofuran core unit. Bioorg. Med. Chem. Lett. 2007,
17, 2434–2437. (c) Nattrass, G. L.; Diez, E.; McLachlan, M. M.;
Dixon, D. J.; Ley, S. V. The total synthesis of the Annonaceous
acetogenin 10-hydroxyasimicin. Angew. Chem., Int. Ed. 2005, 44,
580–584. (d) Hu, Y.; Brown, R. C. D. A metal-oxo mediated
approach to the synthesis of 21,22-diepi-membrarollin. Chem.
Commun. 2005, 45, 5636–5637. (e) Keum, G.; Hwang, C. H.; Kang,
S. B.; Kim, Y.; Lee, E. Stereoselective syntheses of rolliniastatin
1, rollimembrin, and membranacin. J. Am. Chem. Soc. 2005, 127,
10396–10399.
1
cedure, analytical and biological data, and of H and 13C NMR
spectra for selected compounds. This material is available free of
References
(1) (a) McLaughlin, J. L. Paw paw and cancer: Annonaceous acetogenins
from discovery to commercial products. J. Nat. Prod. 2008, 71, 1311–
1321. (b) Bermejo, A.; Figadere, B.; Zafra-Polo, M.-C.; Barrachina,
I.; Estornell, E.; Cortes, D. Acetogenins from annonaceae. Recent
progress in isolation, synthesis, and mechanisms of action. Nat. Prod.
Rep. 2005, 22, 269–303. (c) Alali, Q.; Liu, X.-X.; McLaughlin, J. L.
Annonaceous acetogenins: recent progress. J. Nat. Prod. 1999, 62,
504–540, and references cited therein.
(2) (a) Yuan, S.-S. F.; Chang, H.-L.; Chen, H.-W.; Kuo, F.-C.; Liaw, C.-
C.; Su, J.-H.; Wu, Y.-C. Selective cytotoxicity of squamocin on T24
bladder cancer cells at the S-phase via a Bax-, Bad-, and caspase-3-
related pathways. Life Sci. 2006, 78, 869–874. (b) Lu, M.-C.; Yang,
S.-H.; Hwang, S.-L.; Lu, Y.-J.; Lin, Y.-H.; Wang, S.-R.; Wu, Y.-C.;
Lin, S.-R. Induction of G2/M phase arrest by squamocin in chronic
myeloid leukemia (K562) cells. Life Sci. 2006, 78, 2378–2383.
(3) (a) Derbre, S.; Roue, G.; Poupon, E.; Susin, S. A.; Hocquemiller, R.
The hydroxyl groups and THF rings are crucial structural elements
for targeting the mitochondria, demonstration with the synthesis of
fluorescent squamocin analogues. ChemBioChem 2005, 6, 979–982.
(b) Abe, M.; Kenmochi, A.; Ichimaru, N.; Hamada, T.; Nishioka, T.;
Miyoshi, H. Essential structural features of acetogenins: role of
hydroxy groups adjacent to the bis-THF rings. Bioorg. Med. Chem.
Lett. 2004, 14, 779–782.
(4) He, K.; Shi, G.; Zhao, G.-X.; Zeng, L.; Ye, Q.; Schwedler, J. T.; Wood,
K. V.; McLaughlin, J. L. Three new adjacent bis-tetrahydrofuran
acetogenins with four hydroxyl groups from Asimina triloba. J. Nat.
Prod. 1996, 59, 1029–1034.
(5) (a) Oberlies, N. H.; Croy, V. L.; Harrison, M. L.; McLaughlin, J. L.
The Annonaceous acetogenin bullatacin is cytotoxic against multidrug-
resistant human mammary adenocarcinoma cells. Cancer Lett. 1997,
115, 73–79. (b) Oberlies, N. H.; Chang, C.-J.; McLaughlin, J. L.
Structure-activity relationships of diverse Annonaceous acetogenins
against multidrug resistant human mammary adenocarcinoma (MCF-
7/Adr) cells. J. Med. Chem. 1997, 40, 2102–2106.
(10) (a) Frantz, D. E.; Fa¨ssler, R.; Carreira, E. M. Facile enantioselective
synthesis of propargylic alcohols by direct addition of terminal alkynes
to aldehydes. J. Am. Chem. Soc. 2000, 122, 1806–1807. (b) Kojima,
N.; Maezaki, N.; Tominaga, H.; Asai, M.; Yanai, M.; Tanaka, T.
Systematic construction of a monotetrahydrofuran-ring library in
annonaceous acetogenins by asymmetric alkynylation and stereodi-
vergent tetrahydrofuran-ring formation. Chem.sEur. J. 2003, 9, 4980–
4990.
(11) Brown, H. C.; Jadhav, P. K. Asymmetric carbon-carbon bond
formation via ꢀ-allyldiisopinocampheylborane. Simple synthesis of
secondary homoallylic alcohols with excellent enantiomeric purities.
J. Am. Chem. Soc. 1983, 105, 2092–2093.
(12) Metathesis approach has become a highly versatile route for the
synthesis of acetogenins. For the representative reports, see: (a) refs
6 and 7a. (b) Marshall, J. A.; Sabatini, J. J. An outside-in approach to
adjacent bis-tetrahydrofuran Annonaceous acetogenins with C2 core
symmetry. Total synthesis of asimicin and a C32 analogue. Org. Lett.
2006, 8, 3557–3560. (c) Hoye, T. R.; Eklov, B. M.; Jeon, J.; Khoroosi,
M. Sequencing of three-component olefin metatheses: total synthesis
of either (+)-gigantecin or (+)-14-deoxy-9-oxygigantecin. Org. Lett.
2006, 8, 3383–3386. (d) Mootoo, D. R.; Zhu, L. Total synthesis of
the nonadjacently linked bis-tetrahydrofuran acetogenin bullatanocin
(squamostatin C). J. Org. Chem. 2004, 69, 3154–3157, and references
cited therein.
(13) Grubbs, R. H. Olefin metathesis. Tetrahedron 2004, 60, 7117–7140.
(14) References 5 and 12b. (b) Ye, Q.; He, K.; Oberlies, N. H.; Zeng,
L.; Shi, G.; Evert, D.; McLaughlin, J. L. Longimicins A-D: Novel
bioactive acetogenins from Asimina longifolia (Annonaceae) and
structure-activity relationships of asimicin type of Annonaceous
acetogenins. J. Med. Chem. 1996, 39, 1790–1796. (c) Tormo, J. R.;
DePedro, N.; Royo, I.; Barrachina, I.; Zafra-Polo, M. C.; Cuadril-
lero, C.; Hernandez, P.; Cortes, D.; Pelaez, F. In vitro antitumor
structure-activity relationships of threo/trans/threo/trans/erythro
bis-tetrahydrofuranic acetogenins: Correlations with their inhibition
of mitochondrial complex I. Oncol. Res. 2005, 15, 129–138, and
references cited therein.
(6) Das, S.; Li, L.-S.; Abraham, S.; Chen, Z.; Sinha, S. C. A bidirectional
approach to the synthesis of a complete library of adjacent-bis-THF
Annonaceous acetogenins. J. Org. Chem. 2005, 70, 5922–5931.
(7) (a) Chen, Z.; Sinha, S. C. Total synthesis of 27-hydroxy-bullatacin
and its C-15 epimer, and studies on their inhibitory effect on bovine
heart mitochondrial complex I functions. Tetrahedron 2008, 64, 1603–
1611, Also see: (b) Tian, S. K.; Wang, Z. M.; Jiang, J. K.; Shi, M.
Stereocontrolled construction of the trans-tetrahydrofuran units in
Annonaceous acetogenins. Tetrahedron: Asymmetry 1999, 10, 2551–
2562. (c) Zhao, H.; Gorman, J. S. T.; Pagenkopf, B. L. Advances in
lewis acid controlled carbon-carbon bond-forming reactions enable
a concise and convergent total synthesis of bullatacin. Org. Lett. 2006,
8, 4379–4382.
(15) For the analogous stereoisomeric mono-THF acetogenin library, see:
Curran, D. P.; Zhang, Q.; Richard, C.; Lu, H.; Gudipati, V.; Wilcox,
C. S. Total synthesis of a 28-member stereoisomer library of
murisolins. J. Am. Chem. Soc. 2006, 128, 9561–9573.
(8) For the recent synthesis of the adjacent bis-THF acetogenins from
this laboratory, see: (a) refs 6 and 7a. (b) Avedissian, H.; Sinha, S. C.;
Yazbak, A.; Sinha, A.; Neogi, P.; Sinha, S. C.; Keinan, E. Total
synthesis of asimicin and bullatacin. J. Org. Chem. 2000, 65, 6035–
6051. (c) Han, H.; Sinha, M. K.; D’Souza, L. J.; Keinan, E.; Sinha,
S. C. Total synthesis of 34-hydroxyasimicin and its photoactive
derivative for affinity labeling of the mitochondrial Complex I.
Chem.sEur. J. 2004, 10, 2149–2158, and references cited therein.
(9) For the recent synthesis of the adjacent bisTHF acetogenins from other
laboratories, see: (a) Huh, C. W.; Roush, W. R. Highly stereose-
lective and modular syntheses of 10-hydroxytrilobacin and three
(16) SMPs are prepared as described earlier, see: Matsuno-Yagi, A.; Hatefı,
Y. Studies on the mechanism of oxidative phosphorylation. J. Biol.
Chem. 1985, 260, 14424–14427.
(17) (a) Valeriote, F.; Grieshaber, C. K.; Media, J.; Pietraszkewicz, H.;
Hoffmann, J.; Pan, M.; McLaughlin, S. J. Discovery and development
of anticancer agents from plants. Exp. Ther. Oncol. 2002, 2, 228–
236. (b) Marshall, J. A.; Piettre, A.; Paige, M. A.; Valeriote, F. A
modular synthesis of Annonaceous acetogenins. J. Org. Chem. 2003,
68, 1771–1779.
JM801028C