C O M M U N I C A T I O N S
Table 2. One-Pot Hydroboration and Bidirectional Suzuki-Miyaura
Cross-Coupling of Alkenyl-Containing Organotrifluoroboratesa
Taking into consideration the reactivity differences between
organotrifluoroborates and trialkylboranes, a method was devel-
oped to hydroborate alkenyl-containing organotrifluoroborates.
Conditions were found for reaction of the borane moiety of these
dibora-intermediates in a highly chemoselective fashion, leaving
the trifluoroborate intact for subsequent transformation. The stability
of the trifluoroborate moiety to these metal catalyzed reactions
allows simple and efficient strategies for multicomponent complex
molecule construction.
Acknowledgment. The authors thank the NIH (General Medical
Sciences) and Merck Research Laboratories for their generous
support of our program. We acknowledge Johnson Matthey for their
donation of palladium catalysts and Frontier Scientific for their
donation of boronic acids. Dr. Rakesh Kohli (University of
Pennsylvania) is acknowledged for obtaining HRMS data.
Supporting Information Available: Experimental procedures,
compound characterization data, and NMR spectral data of all
compounds synthesized. This material is available free of charge via
a General conditions: RBF3K (1.0 equiv), 9-BBN (1.0 equiv) and
THF (0.25 M) then Pd(OAc)2 (2 mol %), DavePhos (3 mol %), aryl
electrophile (1.0 equiv), and KF (3 equiv), rt, overnight. b RBF3K
coupling: Pd(OAc)2 (0.5 mol %), electrophile (1.0 equiv), K2CO3 (3
equiv) and MeOH (0.125 M), 65 °C, 2 h. c RBF3K coupling: Pd(OAc)2
(3 mol %), XPhos9 (6 mol %), electrophile (1.0 equiv), Cs2CO3 (3
equiv) and 10:1 THF/H2O (0.25 M), 80 °C, 24 h. d RBF3K coupling:
Pd(OAc)2 (3 mol %), RuPhos10 (6 mol %), electrophile (1.0 equiv),
Cs2CO3 (3 equiv) and 10:1 dioxane/H2O (0.25 M), 100 °C, 24 h.
References
(1) Dembitsky, V. M.; Ali, H. A.; Srebnik, M. Appl. Organomet. Chem. 2003,
17, 327.
(2) (a) Wiesauer, C.; Weissensteiner, W. Tetrahedron: Asymmetry 1996, 7, 5.
(b) Morgan, J. B.; Miller, S. P.; Morken, J. P. J. Am. Chem. Soc. 2003,
125, 8207. (c) Trudeau, S.; Morgan, J. B.; Shrestha, M.; Morken, J. P. J.
Org. Chem. 2005, 70, 9538.
(3) (a) Kalendra, D. M.; Duenes, R. A.; Morken, J. P. Synlett 2005, 1749. (b)
Miller, S. P.; Morgan, J. B.; Nepveaux, F. J. V.; Morken, J. P. Org. Lett.
2004, 6, 131. (c) Desurmont, G.; Klein, R.; Uhlenbrock, S.; Laloe¨, E.;
Deloux, L.; Giolando, D. M.; Kim, Y. W.; Pereira, S.; Srebnik, M.
Organometallics 1996, 15, 3323. (d) Brown, H. C.; Narla, G. J. Org. Chem.
1995, 60, 4686. (e) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber,
J. D.; Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328. (f) Woodward,
A. R.; Burks, H. E.; Chan, L. M.; Morken, J. P. Org. Lett. 2005, 7, 5505.
(g) Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2006, 128, 74. (h) Pelz,
N. F.; Morken, J. P. Org. Lett. 2006, 8, 4557. (i) Burks, H. E.; Liu, S.;
Morken, J. P. J. Am. Chem. Soc. 2007, 129, 8766.
Treatment of allylbenzene with 9-BBN followed by exposure to
the conditions previously described for the cross-coupling of di-
bora substrates provided the elaborated aryl- and alkyltrifluoroborate
products in good yields (Table 3). This method can be extended to
Table 3. Hydroboration of Allylbenzene and Suzuki-Miyaura
Cross-Coupling with Halo-Containing Trifluoroboratesa
(4) (a) Morgan, J. B.; Morken, J. P. Org. Lett. 2003, 5, 2573. (b) Ballard,
C. E.; Morken, J. P. Synthesis 2004, 1321.
(5) (a) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716. (b)
Noguchi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 758.
(6) Lee, S. J.; Gray, K. C.; Paek, J. S.; Burke, M. D. J. Am. Chem. Soc. 2008,
130, 466.
(7) Geneˆt, J.-P.; Darses, S.; Brayer, J.-L.; Demoute, J.-P. Tetrahedron Lett.
1997, 38, 4393.
(8) (a) Molander, G. A.; Biolatto, B. J. Org. Chem. 2003, 68, 4302. (b) Batey,
R. A.; Quach, T. D. Tetrahedron Lett. 2002, 42, 9099. (c) Batey, R. A.;
Thadani, A. N. Org. Lett. 2002, 4, 3827. (d) Hutton, C. A.; Yuen, A. K.
Tetrahedron Lett. 2005, 46, 7899.
(9) 2-Dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl.
(10) 2-Dicyclohexylphosphino-2′,6′-diisopropoxy-1,1′-biphenyl.
(11) (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998,
120, 9772. (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L.
J. Am. Chem. Soc. 1999, 121, 9550.
(12) 2-Dicyclohexylphosphino-2′-(N,N-dimethylamino)biphenyl.
(13) (a) Colberg, J. C.; Rane, A.; Vaquer, J.; Soderquist, J. A. J. Am. Chem.
Soc. 1993, 115, 6065. (b) Wrackmeyer, B.; Schanz, H.-J. Collect. Czech.
Chem. Commun. 1997, 62, 1254.
(14) Molander, G. A.; Canturk, B. Org. Lett. 2008, 10, 2135.
(15) Molander, G. A.; Biolatto, B. Org. Lett. 2002, 4, 1867.
(16) Molander, G. A.; Sandrock, D. L. Org. Lett. 2007, 9, 1597.
a General conditions: 9-BBN (1.1 equiv), allylbenzene (1.1 equiv),
and THF (0.25 M), then Pd(OAc)2 (2 mol %), DavePhos (3 mol %),
RBF3K (1.0 equiv), and KF (3 equiv), rt, 4 h.
bidirectional functionalization as well. This one-pot sequence
provided the fully elaborated product in excellent yield (eq 1).
JA807076D
9
J. AM. CHEM. SOC. VOL. 130, NO. 47, 2008 15793