Journal of the American Chemical Society
Communication
HOMO energy level is lowered by the electronegative cyano
groups, and the LUMO energy level also is greatly lowered by
the π-conjugation between the cyano groups and the SiSi π-
bond. This energy difference clearly corresponds to the
observed red shift in the π−π* transition of 3. This π-
conjugation is also supported by the decrease of the Wiberg
bond index of the SiSi double bond in 3′ (1.883) compared
to that in 3″ (1.944).
thermal parameters for 2a and 3 (PDF/CIF). This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
To understand the C−N bond cleavage of 2a and 2b at low
temperature, the bond dissociation energies (BDEs) relevant
for the cleavage of the nitrogen substituent were estimated (see
the Supporting Information).18 The BDE of the nitrogen−tert-
butyl N−C bond of 2a is smaller than that of a typical C−N
single bond (35.9 kcal/mol for 2a and 77.4 kcal for Me2N−
CMe3 at the B3LYP/6-31G(d) level). The low BDE for the
bis(silaketenimine) system in 2a can be understood on the
basis of resonance stabilization of the radical intermediate, in
which the radical spin density is delocalized over the Si−C−N
π-system (Chart 1, Figure 3).
ACKNOWLEDGMENTS
■
We thank Prof. Y. Apeloig for discussions and suggestions for
the computational studies. This work was financially supported
by Grants-in-Aid for Scientific Research program (Nos.
19105001, 21350023, 23108701, 23655027) from the Ministry
of Education, Science, Sports, and Culture of Japan, JSPS
Research Fellowship for Young Scientist (K.T.).
REFERENCES
■
(1) West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343.
(2) (a) Weidenbruch, M. In The Chemistry of Organic Silicon
Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, UK,
2001; Vol. 3, Chapter 5. (b) Okazaki, R.; West, R. Adv. Organomet.
Chem. 1996, 39, 231. (c) Kira, M.; Iwamoto, T. Adv. Organomet. Chem.
2006, 54, 73. (d) Lee, V. Ya.; Sekiguchi, A. Organometallic Compounds
of Low-Coordinate Si, Ge, Sn and Pb: From Phantom Species to Stable
Compounds; Wiley: Chichester, UK, 2010; Chapter 5.
(3) Karni, M.; Apeloig, Y. J. Am. Chem. Soc. 1990, 112, 8589.
(4) For the second-order Jahn−Teller effect on the heavy alkenes by
π−σ* orbital mixing, see: (a) Trinquier, G.; Malrieu, J.-P. J. Am. Chem.
Soc. 1987, 109, 5303. (b) Malrieu, J.-P.; Trinquier, G. J. Am. Chem. Soc.
1989, 111, 5916. (c) Trinquier, G. J. J. Am. Chem. Soc. 1990, 112,
1039.
Chart 1. Resonance Stabilization of the Radical Intermediate
over the Si−C−N π-System
(5) Kira, M.; Maruyama, T.; Kabuto, C.; Ebata, K.; Sakurai, H. Angew.
Chem., Int. Ed. Engl. 1994, 33, 1489.
(6) (a) Scheschkewitz, D. Angew. Chem., Int. Ed. 2004, 43, 2965.
(b) Ichinohe, M.; Sanuki, K.; Inoue, S.; Sekiguchi, A. Organometallics
2004, 23, 3088.
(7) (a) Inoue, S.; Ichinohe, M.; Sekiguchi, A. Chem. Lett. 2005, 34,
1564. (b) Ichinohe, M.; Sanuki, K.; Inoue, S.; Sekiguchi, A. Silicon
Chem. 2005, 3, 111.
(8) (a) Inoue, S.; Ichinohe, M.; Sekiguchi, A. Chem. Lett. 2008, 37,
1044. (b) Takeuchi, K.; Ikoshi, M.; Ichinohe, M.; Sekiguchi, A. J. Am.
Chem. Soc. 2010, 132, 930. (c) Takeuchi, K.; Ichinohe, M.; Sekiguchi,
A. Organometallics 2011, 30, 2044.
i
Figure 3. SOMO of [(Dsi2 PrSi)SiSi(SiiPrDsi2)(CNtBu)(CN)]• at
HF/6-31G(d).
In summary, we report a new synthetic strategy for the 1,2-
dicyanodisilene derivative 3, the first example of a disilene with
a π-accepting group, by the reaction of disilyne 1 with tert-
butylisocyanide or tert-octylisocyanide. This reaction involved
the formation of disilyne−isocyanide adducts [RSiSiR(CNR′)2]
(9) (a) Schmedake, T. A.; Haaf, M.; Apeloig, Y.; Muller, T.; Bukalov,
̈
S.; West, R. J. Am. Chem. Soc. 1999, 121, 9479. (b) Muller, T.; Apeloig,
̈
Y. J. Am. Chem. Soc. 2002, 124, 3457.
t
(R = SiiPr[CH(SiMe3)2]2, R′ = tBu (2a) or CMe2CH2 Bu (2b))
(10) Pb analogue: (a) Pu, L.; Twamley, B.; Power, P. P. J. Am. Chem.
Soc. 2000, 122, 3524. Ge analogue: (b) Phillips, A. D.; Wright, R. J.;
Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2002, 124, 5930.
(c) Sugiyama, Y.; Sasamori, T.; Hosoi, Y.; Furukawa, Y.; Takagi, N.;
Nagase, S.; Tokitoh, N. J. Am. Chem. Soc. 2006, 128, 1023. Sn
analogue: (d) Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P.
Angew. Chem., Int. Ed. 2002, 41, 1785.
(11) (a) Sekiguchi, A.; Kinjo, R.; Ichinohe, M. Science 2004, 305,
1755. Also see: (b) Kravchenko, V.; Kinjo, R.; Sekiguchi, A.; Ichinohe,
M.; West, R.; Balazs, Y. S.; Schmidt, A.; Karni, M.; Apeloig, Y. J. Am.
Chem. Soc. 2006, 128, 14472. (c) Sekiguchi, A. Pure Appl. Chem. 2008,
80, 447. (d) Murata, Y.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc.
2010, 132, 16768.
stable below −30 °C. Upon warming to room temperature, 2
underwent thermal decomposition to give the unexpected 1,2-
dicyanodisilene R(NC)SiSi(CN)R 3 via C−N bond cleavage
and elimination of an alkane and an alkene. The 1,2-
dicyanodisilene derivative 3 was characterized by X-ray
crystallography, revealing that the doubly bonded Si atoms
have a slightly pyramidalized geometry with the SiSi bond
length of 2.213(2) Å, in contrast to the highly pyramidal
structure of disilenes with electronegative substituents such as
amino groups.
(12) Wiberg, N.; Vasisht, S. K.; Fischer, G.; Mayer, P. Z. Anorg. Allg.
Chem. 2004, 630, 1823.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures for 2a, 2b, and 3; computational
results on model compounds 3′ and 3″; calculated BDEs of 2a,
2c, Me2N−CMe3, Me2N−SiMe3, and model compound 2d;
and crystallographic data including atomic positional and
■
S
(13) (a) Sasamori, T.; Hironaka, K.; Sugiyama, Y.; Takagi, N.;
Nagase, S.; Hosoi, Y.; Furukawa, Y.; Tokitoh, N. J. Am. Chem. Soc.
2008, 130, 13856. (b) Han, J. S.; Sasamori, T.; Mizuhata, Y.; Tokitoh,
N. J. Am. Chem. Soc. 2010, 132, 2546. (c) Han, J. S.; Sasamori, T.;
Mizuhata, Y.; Tokitoh, N. Dalton Trans. 2010, 39, 9238.
2956
dx.doi.org/10.1021/ja212065a | J. Am. Chem.Soc. 2012, 134, 2954−2957