ORGANIC
LETTERS
2008
Vol. 10, No. 23
5405-5408
Arylene Imine Macrocycles of C3h and
C3 Symmetry from Reductive Imination
of Nitroformylarenes
Andrew L. Korich and Thomas S. Hughes*
UniVersity of Vermont, Chemistry Department, Cook Physical Science Building,
82 UniVersity Place, Burlington, Vermont 05405
thomas.s.hughes@uVm.edu
Received October 4, 2008
ABSTRACT
Novel C3-symmetric phenylene imine macrocycles have been synthesized by reductive imination of single nitroformylarenes. Pore size and
geometric shape are dictated by the distance between and orientation of the nitro and aldehyde moieties in the precursor backbone. This
reaction is facile, requires no purification of the products, and is environmentally friendly.
Shape-persistent macrocycles have become an important
class of molecules in several fields, including catalysis,1
liquid crystals,2 and supramolecular chemistry.2a,b,3 By
definition these macrocycles have a very small number of
available conformations, and this structural rigidity makes
them ideal model systems and building blocks for larger
nanostructures.2d,3c,4
Imines have become an appealing moiety for shape-
persistent macrocycles in part because they are easily
synthesized, requiring only a minimal number of steps.5
Furthermore, incorporation of N heteroatoms into the back-
bone allows for metal chelation and in turn the tuning of
the physical and optical properties of the system.6
Many methods have been used to synthesize symmetric
and unsymmetric imine macrocycles. Among the most
common strategies employed is an [n + n] Schiff base
condensation between two precursors, one containing two
formyl groups and the other having two amine groups.7 Metal
templation or hydrogen bonding favors the formation of
macrocycles over linear oligomers. The orientation of the
diformyl and diamine groups (i.e., ortho, meta, para) dictates
the size and geometric shape of the resulting macrocycle.
(1) Martell, A. E.; Perutka, J.; Kong, D. Coord. Chem. ReV. 2001, 216,
55.
(5) For recient review on Schiff base macrocycles, see: (a) Borisova,
N. E.; Reshetova, M. D.; Ustynyuk, Y. A. Chem. ReV. 2007, 107, 46. (b)
MacLachlan, M. J. Pure Appl. Chem. 2006, 78, 2006.
(2) (a) Hoger, S. Chem. Eur. J. 2004, 10, 1321. (b) Lahiri, S.; Thompson,
J. L.; Moore, J. S. J. Am. Chem. Soc. 2000, 122, 11315. (c) Hoger, S.;
Spickermann, J.; Morrison, D. L.; Dziezok, P.; Rader, H. J. Macromolecules
1997, 30, 3110. (d) Shetty, A. S.; Zhang, J.; Moore, J. S. J. Am. Chem.
Soc. 1996, 118, 1019. (e) Zhang, J.; Moore, J. S. J. Am. Chem. Soc. 1994,
116, 2655. (f) Gallant, A. J.; Hui, J. K. H.; Zahariev, F. E.; Wang, Y. A.;
MacLachlan, M. J. J. Org. Chem. 2005, 70, 7936.
(6) (a) Gallant, A. J.; MacLachlan, M. J. Angew. Chem., Int. Ed. 2003,
42, 5307. (b) Ma, C.; Lo, A.; Abdolmaleki, A.; MacLachlan, M. J. Org.
Lett. 2004, 6, 3841. (c) Higuchi, M.; Shomura, R.; Ohtsuka, Y.; Hayashi,
A.; Yamamoto, K.; Kurth, D. G. Org. Lett. 2006, 8, 4723.
(7) (a) Gallant, A. J.; Yun, M.; Sauer, M.; Yeung, S.; MacLachlan, M.
J Org. Lett. 2005, 7, 4827. (b) Akine, S.; Taniguchi, T.; Nabeshima, T.
Tetrahedron Lett. 2001, 42, 8861. (c) Chadim, M.; Budeˇsˇ´ınsky´, M.;
Hodacˇova´, J.; Za´vada, J.; Junk, P. C. Tetrahedron: Asymmetry 2001, 12,
127. (d) Kuhnert, N.; Staꢀnig, C.; Lopez-Periago, A. M. Tetrahedron:
Asymmetry 2002, 13, 123. (e) Gawron´ski, J.; Kołbon, H.; Kwit, M.;
Katrusiak, A. J. Org. Chem. 2000, 65, 5768.
(3) Henze, O.; Lentz, D.; Schlu¨ter, A. D. Chem. Eur. J. 2000, 6, 2362.
(b) Grave, C.; Schlu¨ter, A. D. Eur. J. Org. Chem. 2002, 3075. (c) Shetty,
A. S.; Fischer, P. R.; Stork, K. F.; Bohn, P. W.; Moore, J. S. J. Am. Chem.
Soc. 1996, 118, 9409
.
(4) Pasini, D.; Ricci, M. Curr. Org. Synth. 2007, 4, 59
.
10.1021/ol802302x CCC: $40.75
Published on Web 11/06/2008
2008 American Chemical Society