Letters
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 8 2353
(13) Maiso, P.; Carvajal-Vergara, X.; Ocio, E. M.; Lo´pez-Pe´rez, R.; Mateo,
G.; Gutie´rrez, N.; Atadja, P.; Pandiella, A.; San Miguel, J. F. The
histone deacetylase inhibitor LBH589 is a potent antimyeloma agent
that overcomes drug resistance. Cancer Res. 2006, 66, 5781–5789.
(14) Plumb, J. A.; Finn, P. W.; Williams, R. J.; Bandara, M. J.; Romero,
M. R.; Watkins, C. J.; La Thangue, N. B.; Brown, R. Pharmacody-
namic response and inhibition of growth of human tumor xenografts
by the novel histone deacetylase inhibitor PXD101. Mol. Cancer Ther.
2003, 2, 721–728.
(15) Suzuki, T.; Ando, T.; Tsuchiya, K.; Fukazawa, N.; Saito, A.; Mariko,
Y.; Yamashita, T.; Nakanishi, O. Synthesis and histone deacetylase
inhibitory activity of new benzamide derivatives. J. Med. Chem. 1999,
42, 3001–3003.
(16) Vaisburg, A. Discovery and Development of MGCD0103, an Orally
Active HDAC Inhibitor in Human Clinical Trials. Presented at the
XIXth International Symposium on Medicinal Chemistry, Istanbul,
Turkey, Aug 2006; Paper L57.
(17) (a) Moradei, O. M.; Mallais, T. C.; Frechette, S.; Paquin, I.; Tessier,
P. E.; Leit, S. M.; Fournel, M.; Bonfils, C.; Trachy-Bourget, M.-C.;
Liu, J.; Yan, T. P.; Lu, A.-H.; Rahil, J.; Wang, J.; Lefebvre, S.; Li,
Z.; Vaisburg, A. F.; Besterman, J. M. Novel aminophenyl benzamide-
type histone deacetylase inhibitors with enhanced potency and
selectivity. J. Med. Chem. 2007, 50, 5543–5546. (b) Witter, D. J.;
Harrington, P.; Wilson, K. J.; Chenard, M.; Fleming, J. C.; Haines,
B.; Kral, A, M.; Secrist, J. P.; Miller, T. A. Optimization of biaryl
selective HDAC1&2 inhibitors (SHI-1:2). Bioorg. Med. Chem. Lett.
2008, 18, 726–731.
(18) Chen, J. S.; Faller, D. V.; Spanjaard, R. A. Short-chain fatty acid
inhibitors of histone deacetylases: promising anticancer therapeutics?
Curr. Cancer Drug Targets 2003, 3, 219–236.
(19) Frey, R. R.; Wada, C. K.; Garland, R. B.; Curtin, M. L.; Michaelides,
M. R.; Li, J.; Pease, L. J.; Glaser, K. B.; Marcotte, P. A.; Bouska,
J. J.; Murphy, S. S.; Davidsen, S. K. Trifluoromethyl ketones as
inhibitors of histone deacetylase. Bioorg. Med. Chem. Lett. 2002, 12,
3443–3447.
(20) Darkin-Rattray, S. J.; Gurnett, A. M.; Myers, R. W.; Dulski, P. M.;
Crumley, T. M.; Allocco, J. J.; Cannova, C.; Meinke, P. T.; Colletti,
S. L.; Bednarek, M. A.; Singh, S. B.; Goetz, M. A.; Dombrowski,
A. W.; Polishook, J. D.; Schmatz, D. M. Apicidin: a novel antipro-
tozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad.
Sci. U.S.A. 1996, 93, 13143–13147.
further investigation into the zinc binding group was conducted,
prompted by the observation that apicidin contains an ethyl
rather than methyl ketone. The homologue of 17, the ethyl
ketone 19, was prepared as previously and profiled. Interestingly,
19 was shown to be 2- to 3-fold more potent on HDACs 1, 2,
and 3 and also in antiproliferation assays, compared to 17.
Noticeable was the finding that while 19 showed more activity
on HDACs 1, 2, and 3, a loss of activity was seen on HDACs
4 and 6. Indeed, 19 showed only modest inhibition of HDAC
6 at 10 µM, whereas the corresponding methyl ketone 17
displays IC50 ) 340 nM. It appears that this homologation to
the ethyl ketone improves potency on HDACs 1-3 but also
confers class I selectivity to this series of inhibitors. Further
chain extensions result in significant erosion in enzyme activity
(data not shown). Given the improved inhibition, it is not
unsurprising that 19 demonstrates submicromolar antiprolifera-
tion activity on the panel of cell lines and indeed shows superior
activity compared to 1 and 4, notably the kidney G401 and
ovarian A2780 cells.
In conclusion, an entirely novel class of ketone small
molecule selective HDAC inhibitors have been developed. These
compounds show levels of cellular activity comparable to
existing clinical candidates. Furthermore, variations in the ketone
zinc binding group have been demonstrated to fine-tune the
isoform profile, thereby abolishing activity on HDAC 6, thus
yielding selective HDAC 1, 2, and 3 inhibitors. A representative
example 17 has been demonstrated to cause tumor growth
inhibition in a xenograft model.
Acknowledgment. The authors thank S. Serafini, O. Cec-
chetti, R. Scarpelli, M. Fonsi, and S. Spieser for their support
of this work.
(21) Ueda, H.; Nakajima, H.; Hori, Y.; Fujita, T.; Nishimura, M.; Goto,
T.; Okuhara, M. FR901228, a novel antitumor bicyclic depsipeptide
produced by Chromobacterium Violaceum no. 968. I. Taxonomy,
fermentation, isolation, physico-chemical and biological properties,
and antitumor activity. J. Antibiot. 1994, 47, 301–310.
Supporting Information Available: Complete experimental
procedures and characterization data. This material is available free
(22) Walton, J. D. HC-toxin. Phytochemistry 2006, 67, 1406–1413.
(23) Mori, H.; Urano, Y.; Abe, F.; Furukawa, S.; Furukawa, S.; Tsurumi,
Y.; Sakamoto, K.; Hashimoto, M.; Takase, S.; Hino, M.; Fujii, T.
FR235222, a fungal metabolite, is a novel immunosuppressant that
inhibits mammalian histone deacetylase (HDAC). I. Taxonomy,
fermentation, isolation and biological activities. J. Antibiot. 2003, 56,
72–79.
(24) Nakao, Y.; Yoshida, S.; Matsunaga, S.; Shindoh, N.; Terada, Y.; Nagai,
K.; Yamashita, J. K.; Ganesan, A.; van Soest, R. W. M.; Fusetani,
N.; Azumamides, A.-E. Histone deacetylase inhibitory cyclic tetrapep-
tides from the marine sponge Mycale izuensis. Angew. Chem., Int.
Ed. 2006, 45, 7553–7557.
(25) Jones, P.; Steinkuhler, C. From natural products to small molecule
ketone histone deacetylase inhibitors: development of new class
specific agents. Curr. Pharm. Des. 2008, 14, 545–561.
(26) Jones, P.; Altamura, S.; Chakravarty, P. K.; Cecchetti, O.; De
Francesco, R.; Gallinari, P.; Ingenito, R.; Meinke, P. T.; Petrocchi,
A.; Rowley, M.; Scarpelli, R.; Serafini, S.; Steinkuhler, C. A series of
novel, potent, and selective histone deacetylase inhibitors. Bioorg. Med.
Chem. Lett. 2006, 16, 5948–5952.
(27) Vannini, A.; Volpari, C.; Gallinari, P.; Jones, P.; Mattu, M.; Carfı,
A.; De Francesco, R.; Steinkuhler, C.; Di Marco, S. Substrate binding
to histone deacetylases as shown by the crystal structure of the
HDAC8-substrate complex. EMBO Rep. 2007, 8, 879–884.
(28) Lahm, A.; Paolini, C.; Pallaoro, M.; Nardi, M. C.; Jones, P.;
Neddermann, P.; Sambucini, S.; Bottomley, M. J.; Lo Surdo, P.; Carf´ı,
A.; Koch, U.; De Francesco, R.; Steinku¨hler, C.; Gallinari, P.
Unraveling the hidden catalytic activity of vertebrate class IIa histone
deacetylases. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 17335–40.
(29) The Abbott group, ref 19, demonstrated in vivo efficacy with
electrophilic ketones but reported only marginal cellular activity with
alkyl ketones.
References
(1) Bolden, J. E.; Peart, M. J.; Johnstone, R. W. Anticancer activities of
histone deacetylase inhibitors. Nat. ReV. Drug DiscoVery 2006, 5, 769–
784.
(2) Dey, P. Chromatin remodeling, cancer and chemotherapy. Curr. Med.
Chem. 2006, 13, 2909–2919.
(3) Santos-Rosa, H.; Caldas, C. Chromatin modifier enzymes, the histone
code and cancer. Eur. J. Cancer 2005, 41, 2381–2402.
(4) Yoo, C. B.; Jones, P. A. Epigenetic therapy of cancer: past, present
and future. Nat. ReV. Drug DiscoVery 2006, 5, 37–50.
(5) de Ruijter, A. J. M.; van Gennip, A. H.; Caron, H. N.; Kemp, S.; van
Kuilenburg, A. B. P. Histone deacetylases (HDACs): characterization
of the classical HDAC family. Biochem. J. 2003, 370, 737–749.
(6) Cheng, W. L.; Briggs, S. D.; Allis, C. D. Acetylation and chromosomal
functions. Curr. Opin. Cell Biol. 2000, 12, 326–333.
(7) Minucci, S.; Pelicci, P. G. Histone deacetylase inhibitors and the
promise of epigenetic (and more) treatments for cancer. Nat. ReV.
Cancer 2006, 6, 38–51.
(8) Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase
inhibitors: from bench to clinic. J. Med. Chem. 2008, 51, 1505–1529.
(9) Marks, P. A.; Rifkind, R. A.; Richon, V. M.; Breslow, R.; Miller, T.;
Kelly, W. K. Histone deacetylases and cancer: causes and therapies.
Nat. ReV. Cancer 2001, 1, 194–202.
(10) Grant, S.; Easley, C.; Kirkpatrick, P. Vorinostat. Nat. ReV. Drug
DiscoVery 2007, 6, 21–22.
(11) Rasheed, W. K.; Johnstone, R. W.; Prince, H. M. Histone deacetylase
inhibitors in cancer therapy. Expert Opin. InVest. Drugs 2007, 16, 659–
678.
(12) Richon, V. M.; Webb, Y.; Merger, R.; Sheppard, T.; Jursic, B.; Ngo,
L.; Civoli, F.; Breslow, R.; Rifkind, R. A.; Marks, P. A. Second
generation hybrid polar compounds are potent inducers of transformed
cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 5705–
5708.
JM800079S