Cruz-Gregorio et al.
FIGURE 1. Chair-twist equilibrium of cyclic adenosine monophosphate (cAMP).
SCHEME 1. Proposed Prodrug Cleavage Mechanism for
Cyclic 4-Aryl-phosphorinanes
phosphates, they proposed that cAMP in a twisted conforma-
tion could be appropriate for such enzyme-cAMP interac-
tions (Figure 1).10
On the other hand, more recently, Erion introduced a new
class of six-membered ring phosphates and phosphonates for
targeting phosph(on)ate-based drugs to the liver (HepDirect
prodrugs).12-15 Apparently, this new class of prodrugs combines
properties of rapid liver cleavage with high plasma and tissue
stability to achieve increased drug levels in the liver.12 An
additional feature of these new prodrugs is that the aryl group
attached to the C4 position in a cis orientation, seems to be a
crucial element for the biological activity.12 Mechanistic studies
suggested that prodrug I undergoes oxidation to the hydroxylated
intermediate II, which subsequently eliminates unsaturated
ketone IV and releases the biologically active nucleoside
monophosphate III (Scheme 1).12-15
Similarly, cyclic aryl phosphoramides V represent another
important class of prodrugs that have been used for drug delivery
in tumor treatments.16-18 Similar to Erion’s prodrugs, this cyclic
aryl-phosphoramides incorporate a p-nitrophenyl group at the
C4 position that after bioreduction by nitroreductasa (NTR)
affords hydroxylamine VI that facilitates the C4-O3 bond
cleavage producing the anionic cytotoxic species VII (Scheme
2).17,18
On this basis, it seems evident that the aryl group attached
to the C4 position of the heterocyclic ring provides the driving
force for the prodrug mechanism action; however, this is only
a simple observation.19 Therefore, we suppose that, as for
cAMP, where the conformation of the 1,3,2-dioxaphosphorinane
ring seems to be determinant for the mechanistic action in the
cellular media,10,11 the biological activity of these new cyclic
prodrugs should depend on the conformation of the heterocyclic
ring. In this sense, this article reports our results on the
conformational and configurational study of conformationally
restricted six-membered ring phosph(on)ates having an aryl
group with different electronic demand at the C4 position and
P-atom, which may provide mechanistic information on cyclic
prodrug cleavage.
We have recently carried out the conformational and con-
figurational study of a series of conformationally restricted
4-sustituted-1,3,2-dioxaphosphorinanes.20-22 In this study we
have found a new way for monitoring with high precision the
conformational equilibria between two conformers. For those
cyclic phosphates with RP configuration that have a phenyl group
equatorially oriented at C4 position, a chair-boat equilibrium
(C1hB1) was proposed,20-22 whereas a chairhtwist equilib-
rium (C1hT) was suggested for their SP-epimers (Scheme 3).
Conformers C2 and B2 (of which B2 has been proposed in
related cyclic phosphates23-25), were not considered in study,
first because the equilibrium C1hB1 was supported by trapping
both conformers in the solid state within the same crystal
´
(1) Frank, E.; Wolfling, J. Curr. Org. Chem 2007, 11, 1610.
(2) Gallagher, M. J. In Phosphorus-31 NMR Spectroscopy in Stereochem-
ical Analysis; Verkade, J. G., Quin, L., Eds; VCH: Deerfield Beach, FL,
1987; Chapter 9.
(3) Bentrude, W. G.; Setzer, W. N. Stereospecificity in 31P-Element
Coupling: Proton-Phosphorus Coupling In Phosphorus-31 NMR Spectroscopy
in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds; VCH: Weinheim,
1987.
(4) Bentrude, W. G. Steric and Stereoelectronic Effects in 1,3,2-Dioxaphos-
phorinanes. In Methods in Stereochemical Analysis; Juaristi, E., Ed.; VCH: New
York, 1995.
(5) Gorenstein, D. G. In Phosphorus-31 NMR: Principles and Applications;
Gorenstein, D. G., Ed.; Academic Press: New York, 1984.
(6) Maryanoff, B. E.; Hutchins, R. O.; Maryanoff, C. A. Top. Stereochem.
1979, 11, 187.
(7) Gorenstein, D. G. Chem. ReV. 1987, 87, 1047.
(8) Nifant’ev, E. E.; Zavalishina, A. I. Russ. Chem. ReV. 1982, 51, 1601.
(9) Arshinova, R. P. Russ. Chem. ReV. 1984, 53, 351.
(10) Nelson, K. A.; Bentrude, W. G.; Setzer, W. N.; Hutchinson, J. P. J. Am.
Chem. Soc. 1987, 109, 4058.
(11) See also: (a) Yu, J. H.; Arif, A. M.; Bentrude, W. G. J. Am. Chem. Soc.
1990, 112, 7451.
(12) Erion, M. D.; Reddy, K, R.; Boyer, S. H.; Matelich, M. C.; Gomez-
Galeno, J.; Lemus, R. H.; Ugarkar, B. G.; Colby, T. J.; Schanzer, J.; van Poelje,
P. D. J. Am. Chem. Soc. 2004, 126, 5154.
(13) Erion, M. D.; van Poelje, P. D.; Mackenna, D. A.; Colby, T. J.; Montag,
A. C.; Fujitaka, J. M.; Linemeyer, D. L.; Bullough, D. A. J. Pharmacol. Exp.
Ther. 2005, 312, 554.
(14) Hecker, S.; Erion, M. D. J. Med. Chem. 2008, 51, 2328.
(15) Hecker, S. J.; Reddy, K. R.; van Poelje, P. D.; Sun, Z.; Huang, W.;
Varkhedkar, V.; Reddy, M. V.; Fujitaki, J. M.; Olsen, D. B.; Koeplinger, K. A.;
Boyer, S. H.; Linemeyer, D. L.; MacCoss, M.; Erion, M. D. J. Med. Chem.
2007, 50, 3891.
(19) Erion suggested that the prodrug cleavage proceeds via an initial
oxidation at C4 (see ref 12), and Hu suggested that an electron-donating group
in the aromatic ring facilitates the prodrug cleavage (see ref 16), however, no
fundamental explanations for the selective prodrug cleavage were given.
(20) Cruz-Gregorio, S.; Sa´nchez, M.; Clara-Sosa, A.; Be´rnes, S.; Quintero,
L.; Sartillo-Piscil, F. J. Org. Chem. 2005, 70, 7107.
(21) Sartillo-Piscil, F.; Cruz-Gregorio, S.; Sa´nchez, M.; Quintero, L. Tetra-
hedron 2004, 60, 3001.
(22) Sartillo-Piscil, S.; Cruz-Gregorio, S.; Sa´nchez, M.; Hopfl, H.; Anaya
de Parrodi, C.; Quintero, L. Tetrahedron 2003, 59, 4077.
(16) Borch, R. F.; Millard, J. A. J. Med. Chem. 1987, 30, 427.
(17) Hu, L.; Yu, C.; Jiang, Y.; Han, J.; Li, Z.; Browne, P.; Race, P. R.;
Knox, R. J.; Searle, P. F.; Hyde, E. I. J. Med. Chem. 2003, 46, 4818.
(18) Li, Z.; Han, J.; Jiang, Y.; Browne, P.; Knox, R. J.; Hu, L. Bioorg. Med.
Chem. 2003, 11, 4171.
(23) Hermans, R. J. M.; Buck, H. M. J. Org. Chem. 1988, 53, 2077.
(24) Neeser, J.-T.; Tronchet, J. M. J.; Charollais, E. J. Can. J. Chem. 1983,
61, 13.
(25) Morr, M.; Ernts, L.; Mengel, R. Liebigs Ann. Chem. 1982, 651.
198 J. Org. Chem. Vol. 74, No. 1, 2009