RSC Advances
Communication
3 S. Balasubramaniam and I. S. Aidhen, Synthesis, 2008,
3707–3738.
´
4 V. Pace, W. Holzer, G. Verniest, A. R. Alcantara and N. De
Kimpe, Adv. Synth. Catal., 2013, 355, 919–926.
5 M. P. Sibi, Org. Prep. Proced. Int., 1993, 25, 15–40.
6 P. Anastas and N. Eghbali, Chem. Soc. Rev., 2010, 39, 301–312.
7 S. W. Kim, S. M. Bauer and R. W. Armstrong, Tetrahedron Lett.,
1998, 39, 6993–6996.
Scheme 2 Synthetic versatility of a Weinreb amide.
8 T. Q. Dinh and R. W. Armstrong, Tetrahedron Lett., 1996, 37,
1161–1164.
9 J. M. White, A. R. Tunoori, B. J. Turunen and G. I. Georg, J. Org.
Chem., 2004, 69, 2573–2576.
10 A. Kumar, H. K. Akula and M. K. Lakshman, Eur. J. Org. Chem.,
2010, 2709–2715.
11 T. Niu, W. Zhang, D. Huang, C. Xu, H. Wang and Y. Hu, Org.
Lett., 2009, 11, 4474–4477.
12 J. M. Williams, R. B. Jobson, N. Yasuda, G. Marchesini, U.-
H. Dolling and E. J. J. Grabowski, Tetrahedron Lett., 1995, 36,
5461–5464.
13 J. C. S. Woo, E. Fenster and G. R. Dake, J. Org. Chem., 2004, 69,
8984–8986.
14 R. Krishnamoorthy, S. Q. Lam, C. M. Manley and R. J. Herr, J.
Org. Chem., 2010, 75, 1251–1258.
15 J. R. Martinelli, D. M. M. Freckmann and S. L. Buchwald, Org.
Lett., 2006, 8, 4843–4846.
groups including a halide or an ester sensitive to hydrolysis within
the core of the acid (entries 15–21). Of particular significance is the
excellent yield obtained for the bulky pivaloyl chloride (entry 19),
which, as previously reported, proved to be a problematic
substrate.13 Although reactions carried out on acid chlorides
reached to completion within 1 h, a dramatic decrease of the
reaction times was noticed for the corresponding bromides that
provided the desired Weinreb amides within only 20 min.
Finally, we employed Weinreb amide 22a for the preparation of
the aldehyde 23, which is a key synthon for the preparation of
pharmacologically relevant targets such as glyoxalase I inhibitors47
or cardiotonic biimidazoles.48 As previously reported by Chari and
Kozarich,47 it has been obtained in low overall yield after a long
reduction-oxidation sequence starting from the corresponding
ester. Moreover, also when the reduction of the ester was
attempted with DIBAL-H, the yield did not increase significantly.49
Thus, we could selectively prepare 23 in 79% yield by simply
reducing the protected Weinreb amide derived from 22a with
LiAlH4 in 2-MeTHF (Scheme 2). In such a way, the access to 23 is
facilitated compared to the above mentioned procedures: 1) on
one hand the Weinreb amide could be directly reduced to the
aldehyde and 2) the reduction of the Weinreb amide with LiAlH4 is
evidently more convenient than the reduction of the ester with
DIBAL-H.
16 A. Deagostino, P. Larini, E. G. Occhiato, L. Pizzuto, C. Prandi
and P. Venturello, J. Org. Chem., 2008, 73, 1941–1945.
17 M. Murakami, Y. Hoshino, H. Ito and Y. Ito, Chem. Lett., 1998,
163–164.
18 N. O. V. Sonntag, Chem. Rev., 1953, 52, 237–416.
´
´
19 V. Pace, P. Hoyos, L. Castoldi, P. Domınguez de Marıa and A.
´
R. Alcantara, ChemSusChem, 2012, 5, 1369–1379.
20 S. Shanmuganathan, D. Natalia, A. Van den Wittenboer,
´
´
C. Kohlmann, L. Greiner and P. Domınguez de Marıa, Green
Chem., 2010, 12, 2240–2245.
´
´
21 S. Shanmuganathan, L. Greiner and P. Domınguez de Marıa,
Conclusions
Tetrahedron Lett., 2010, 51, 6670–6672.
22 E. J. Garcia-Suarez, A. M. Balu, M. Tristany, A. B. Garcia,
K. Philippot and R. Luque, Green Chem., 2012, 14, 1434–1439.
23 F. E. A. Van Waes, J. Drabowicz, A. Cukalovic and C. V. Stevens,
Green Chem., 2012, 14, 2776–2779.
24 I. S. Aidhen and J. R. Ahuja, Tetrahedron Lett., 1992, 33,
5431–5432.
In conclusion, we have developed a straightforward access to
synthetically useful Weinreb amides starting from commercially
available or readily obtainable acid halides in the biphasic
medium (alkaline) water/2-MeTHF. Due to the immiscibility of
this biomass derived solvent with water, there is no necessity to
use any noxious organic solvent within the whole preparative
process. Pure compounds are obtained by simple removal of
2-MeTHF, thus avoiding purification steps which would compli-
cate the efficiency of the sequence. The protocol is characterized
by a wide applicability to variously functionalized acid halides and
moreover, has been used for the preparation of a multielec-
trophilic aldehyde of pharmacologically relevance. Further studies
on the topic are currently in progress in our laboratory and will be
presented in due course.
´
25 V. Pace, P. Hoyos, M. Fernandez, J. V. Sinisterra and A.
´
R. Alcantara, Green Chem., 2010, 12, 1380–1382.
´
26 V. Pace, A. R. Alcantara and W. Holzer, Green Chem., 2011, 13,
1986–1989.
27 V. Pace, L. Castoldi, P. Hoyos, J. V. Sinisterra, M. Pregnolato and
´
J. M. Sanchez-Montero, Tetrahedron, 2011, 67, 2670–2675.
´
28 V. Pace, L. Castoldi, A. R. Alcantara and W. Holzer, Green Chem.,
2012, 14, 1859–1863.
´
29 V. Pace, G. Verniest, J. V. Sinisterra, A. R. Alcantara and N. De
Kimpe, J. Org. Chem., 2010, 75, 5760–5763.
´
30 V. Pace, P. Hoyos, A. R. Alcantara and W. Holzer,
Notes and references
ChemSusChem, 2013, 6, 905–910.
31 P. G. Jessop, Green Chem., 2011, 13, 1391–1398.
32 R. A. Sheldon, Green Chem., 2005, 7, 267–278.
33 D. R. Nicponski and P. V. Ramachandran, Future Med. Chem.,
2011, 3, 1469–1473.
1 S. Nahm and S. M. Weinreb, Tetrahedron Lett., 1981, 22,
3815–3818.
2 J. Singh, N. Satyamurthi and I. S. Aidhen, J. Prakt. Chem., 2000,
342, 340–347.
34 W. J. W. Watson, Green Chem., 2012, 14, 251.
This journal is ß The Royal Society of Chemistry 2013
RSC Adv., 2013, 3, 10158–10162 | 10161