A R T I C L E S
Evans et al.
racids have revealed a number of toxic effects such as cytoxicity
in mammalian cell lines,10 teratogenic effects in finfish,11
pertubation of cell adhesion,12 disorganization of the Actin
cytoskeleton,13 and inhibition of the electrical activity of
neuronal networks,14 although the specific modes of all such
actions of azaspiracids yet remain unclear.15 The scarcity of
azaspiracids from natural sources serves as a further complica-
tion in mechanistic elucidations aiming to better understand their
toxicity and ultimately prevent their hazards to human health.
The intriguing structure of this toxin has furthermore served
to stimulate interest in the chemical community, in particular
by the research groups of Nicolaou,16 Carter,17,18 Forsyth,19 and
others.20 The Nicolaou group reported a successful synthesis
of the proposed structure 1 in 2003, only to clearly reveal its
nonidentity to the isolated natural product.21 Subsequent impres-
sive efforts in the Nicolaou group using a combination of
degradation studies and the synthesis of multiple diastereomers
resulted in a significant structural revision of azaspiracid-1 by
total synthesis. These landmark studies allowed the unambiguous
Figure 2. 3D-representation of (-)-azaspiracid-1 (2) highlighting stabilizing
anomeric effects in the molecule.
structural assignment of (-)-azaspiracid-1 (2) in 2004.22 As
highlighted in Figure 1, the position of the A-ring olefin (yellow)
was different, and the relative configurations of the CD- and
FGHI-domains (green) were opposite in the correctly assigned
natural product 2 compared to the originally proposed structure
1. On the basis of these findings, an improved synthesis of (-)-
azaspiracid-1 (2) was recently reported by the Nicolaou group.23
Synthesis Plan. Conformational analysis of azaspiracid-1
suggests that each of the multiple ketals exists in their
thermodynamically favored configuration on the basis of ano-
meric stabilization and steric effects (2, Figure 2). Accordingly,
a number of thermodynamically controlled ketalization events
were incorporated into the synthesis plan under the assumption
that the desired configurations would be achieved under
equilibrating conditions. Notably, whereas the ABC-bis(spiroket-
al) portion of the originally proposed structure 16 contained only
one anomeric effect (not shown), the ABC-moiety of the
corrected (-)-azaspiracid-1 structure (2)22 incorporates two
stabilizing anomeric effects and is presumed to be in its favored
configuration. Thus, a thermodynamically controlled spiroket-
alization should be effective in controlling both spiroketal
stereocenters at C10 and C13. We also anticipated that the FG-
ring bicyclic ketal might also be constructed by an acid-catalyzed
ketalization. Finally, we suspected that the HI-ring spiroaminal
would spontaneously cyclize to provide the desired configuration
at the C36 ring junction from an acyclic precursor with an
unprotected C40 amino group.
(10) Twiner, M. J.; Hess, P.; Dechraoui, M. Y. B.; McMahon, T.; Samons,
M. S.; Satake, M.; Yasumoto, T.; Ramsdell, J. S.; Doucette, G. J.
Toxicon 2005, 45, 891–900.
(11) Colman, J. R.; Twiner, M. J.; Hess, P.; McMahon, T.; Satake, M.;
Yasumoto, T.; Doucette, G. J.; Ramsdell, J. S. Toxicon 2005, 45, 881–
890.
(12) Ronzitti, G.; Hess, P.; Rehmann, N.; Rossini, G. P. Toxicol. Sci. 2007,
95, 427–435.
(13) Vilarino, N.; Nicolaou, K. C.; Frederick, M. O.; Cagide, E.; Ares,
I. R.; Louzao, M. C.; Vieytes, M. R.; Botana, L. M. Chem. Res.
Toxicol. 2006, 19, 1459–1466.
(14) Kulagina, N. V.; Twiner, M. J.; Hess, P.; McMahon, T.; Satake, M.;
Yasumoto, T.; Ramsdell, J. S.; Doucette, G. J.; Ma, W.; O’Shaughnessy,
T. J. Toxicon 2006, 47, 766–773.
(15) (a) Alfonso, A.; Vieytes, M. R.; Ofuji, K.; Satake, M.; Nicolaou, K. C.;
Frederick, M. O.; Botana, L. M. Biochem. Biophys. Res. Commun.
2006, 346, 1091–1099. (b) Vale, C.; Nicolaou, K. C.; Frederick, M. O.;
Gomez-Limia, B.; Alfonso, A.; Vieytes, M. R.; Botana, L. M. J. Med.
Chem. 2007, 50, 356–363.
(16) (a) Nicolaou, K. C.; Pihko, P. M.; Diedrichs, N.; Zou, N.; Bernal, F.
Angew. Chem., Int. Ed. 2001, 40, 1262–1265. (b) Nicolaou, K. C.;
Qian, W. Y.; Bernal, F.; Uesaka, N.; Pihko, P. M.; Hinrichs, J. Angew.
Chem., Int. Ed. 2001, 40, 4068–4071.
(17) (a) Carter, R. G.; Weldon, D. J. Org. Lett. 2000, 2, 3913–3916. (b)
Carter, R. G.; Graves, D. E. Tetrahedron Lett. 2001, 42, 6035–6039.
(c) Carter, R. G.; Bourland, T. C.; Graves, D. E. Org. Lett. 2002, 4,
2177–2179. (d) Carter, R. G.; Graves, D. E.; Gronemeyer, M. A.;
Tschumper, G. S. Org. Lett. 2002, 4, 2181–2184. (e) Zhou, X. T.;
Carter, R. G. Chem. Commun. 2004, 2138–2140. (f) Zhou, X. T.; Lu,
L.; Furkert, D. P.; Wells, C. E.; Carter, R. G. Angew. Chem., Int. Ed.
2006, 45, 7622–7626.
(21) (a) Nicolaou, K. C.; Li, Y. W.; Uesaka, N.; Koftis, T. V.; Vyskocil,
S.; Ling, T. T.; Govindasamy, M.; Qian, W.; Bernal, F.; Chen, D. Y. K.
Angew. Chem., Int. Ed. 2003, 42, 3643–3648. (b) Nicolaou, K. C.;
Chen, D. Y. K.; Li, Y. W.; Qian, W. Y.; Ling, T. T.; Vyskocil, S.;
Koftis, T. V.; Govindasamy, M.; Uesaka, N. Angew. Chem., Int. Ed.
2003, 42, 3649–3653. (c) Nicolaou, K. C.; Pihko, P. M.; Bernal, F.;
Frederick, M. O.; Qian, W. Y.; Uesaka, N.; Diedrichs, N.; Hinrichs,
J.; Koftis, T. V.; Loizidou, E.; Petrovic, G.; Rodriquez, M.; Sarlah,
D.; Zou, N. J. Am. Chem. Soc. 2006, 128, 2244–2257. (d) Nicolaou,
K. C.; Chen, D. Y. K.; Li, Y. W.; Uesaka, N.; Petrovic, G.; Koftis,
T. V.; Bernal, F.; Frederick, M. O.; Govindasamy, M.; Ling, T. T.;
Pihko, P. M.; Tang, W. J.; Vyskocil, S. J. Am. Chem. Soc. 2006, 128,
2258–2267.
(18) (a) Carter, R. G.; Bourland, T. C.; Zhou, X. T.; Gronemeyer, M. A.
Tetrahedron 2003, 59, 8963–8974. (b) Zhou, X. T.; Carter, R. G.
Angew. Chem., Int. Ed. 2006, 45, 1787–1790.
(19) (a) Dounay, A. B.; Forsyth, C. J. Org. Lett. 2001, 3, 975–978. (b)
Aiguade, J.; Hao, J. L.; Forsyth, C. J. Org. Lett. 2001, 3, 979–982.
(c) Aiguade, J.; Hao, J. L.; Forsyth, C. J. Tetrahedron Lett. 2001, 42,
817–820. (d) Hao, J. L.; Aiguade, J.; Forsyth, C. J. Tetrahedron Lett.
2001, 42, 821–824. (e) Forsyth, C. J.; Hao, J. L.; Aiguade, J. Angew.
Chem., Int. Ed. 2001, 40, 3663–3667. (f) Geisler, L. K.; Nguyen, S.;
Forsyth, C. J. Org. Lett. 2004, 6, 4159–4162. (g) Nguyen, S.; Xu,
J. Y.; Forsyth, C. J. Tetrahedron 2006, 62, 5338–5346. (h) Forsyth,
C. J.; Xu, J. Y.; Nguyen, S. T.; Samdal, I. A.; Briggs, L. R.;
Rundberget, T.; Sandvik, M.; Miles, C. O. J. Am. Chem. Soc. 2006,
128, 15114–15116. (i) Li, Y. F.; Zhou, F.; Forsyth, C. J. Angew. Chem.,
Int. Ed. 2007, 46, 279–282.
(22) (a) Nicolaou, K. C.; Vyskocil, S.; Koftis, T. V.; Yamada, Y. M. A.;
Ling, T. T.; Chen, D. Y. K.; Tang, W. J.; Petrovic, G.; Frederick,
M. O.; Li, Y. W.; Satake, M. Angew. Chem., Int. Ed. 2004, 43, 4312–
4318. (b) Nicolaou, K. C.; Koftis, T. V.; Vyskocil, S.; Petrovic, G.;
Ling, T. T.; Yamada, Y. M. A.; Tang, W. J.; Frederick, M. O. Angew.
Chem., Int. Ed. 2004, 43, 4318–4324. (c) Nicolaou, K. C.; Koftis,
T. V.; Vyskocil, S.; Petrovic, G.; Tang, W. J.; Frederick, M. O.; Chen,
D. Y. K.; Li, Y. W.; Ling, T. T.; Yamada, Y. M. A. J. Am. Chem.
Soc. 2006, 128, 2859–2872.
(20) (a) Sasaki, M.; Iwamuro, Y.; Nemoto, J.; Oikawa, M. Tetrahedron
Lett. 2003, 44, 6199–6201. (b) Ishikawa, Y.; Nishiyama, S. Tetrahe-
dron Lett. 2004, 45, 351–354. (c) Ishikawa, Y.; Nishiyama, S.
Heterocycles 2004, 63, 539–565. (d) Ishikawa, Y.; Nishiyama, S.
Heterocycles 2004, 63, 885–893. (e) Oikawa, M.; Uehara, T.; Iwayama,
T.; Sasaki, M. Org. Lett. 2006, 8, 3943–3946. (f) Yadav, J. S.;
Joyasawal, S.; Dutta, S. K.; Kunwar, A. C. Tetrahedron Lett. 2007,
48, 5335–5340. (g) Yadav, J. S.; Venugopal, C. Synlett 2007, 2262–
2266. (h) Li, X.; Li, J.; Mootoo, D. R. Org. Lett. 2007, 9, 4303–
4306.
(23) (a) Nicolaou, K. C.; Frederick, M. O.; Loizidou, E. Z.; Petrovic, G.;
Cole, K. P.; Koftis, T. V.; Yamada, Y. M. A. Chem. Asian J. 2006,
1, 245–263. (b) Nicolaou, K. C.; Frederick, M. O.; Petrovic, G.; Cole,
K. P.; Loizidou, E. Z. Angew. Chem., Int. Ed. 2006, 45, 2609–2615.
9
16296 J. AM. CHEM. SOC. VOL. 130, NO. 48, 2008