C O M M U N I C A T I O N S
bonding was confirmed by the X-ray structure and 1H experiments.
A bimetallic mechanism is suggested by the kinetic experiment
(Rate [catalyst]2). This result proves the validity of novel self-
assembly based approaches toward the efficient construction of
chiral bimetallic catalyst systems. Further modifications of ligand
structure to allow formation of heterobimetallic dimers are in
progress.
Table 2. Scope of Aromatic Aldehydes of the Self-Assembled
Cobalt(salen) Catalyzed Asymmetric Henry Reactiona
Co(salen)
(mol%)
time
(h)
yield
(%)
eeb
(%)
entry
aldehyde
1
2
3
4
5
6
7
8
o-MeOC6H4 (5a)
o-ClC6H4 (5b)
o-FC6H4 (5c)
2
2
2
2
2
5
2
2
48
14
14
40
40
110
40
65
89
97
97
99
65
77
92
88
96
93
94
82
90
81
91
87
Acknowledgment. We thank Prof. Ron Castellano for helpful
discussions and the University of Florida for financial support.
p-CF3C6H4 (5d)
p-FC6H4 (5e)
Supporting Information Available: Experimental details, NMR
spectra for new compounds, kinetic data, nonlinear curve-fitting
analysis, and HPLC analysis data (pdf), and X-ray crystallographic data
for 3a (cif). This material is available free of charge via the Internet at
p-MeOC6H4 (5f)c
1-naphthyl (5g)
2-naphthyl (5h)
a The reaction was carried out at 0.25 mmol scale in CH2Cl2 (0.25
mL) at -30 °C. b Ee was determined by chiral HPLC. c 10 mol% of
DIPEA were used.
References
(1) Stra¨ter, N.; Lipscomb, W. N.; Klabunde, T.; Krebs, B. Angew. Chem., Int.
Ed. 1996, 35, 2024.
To confirm our hypothesis that the bimetallic activation plays a
critical role in the Co(salen) catalyzed Henry reaction, kinetic studies
were performed by monitoring initial reaction rates (consumption
of o-methoxybenzaldehyde) by HPLC. Rate laws were found to
be second order in cobalt concentration (Rate ) kobs[Co-Salen]2)
for both monomeric (4) and self-assembled Co(salen) complexes
(1a), indicating that two molecules of 4 and 1a are involved in the
transition state. Rate constant kobs of self-assembled catalyst 1a is
289 M-1 h-1, which is 48 times larger than that of monomeric
cobalt-salen catalyst 4 (kobs ) 6.02 M-1 h-1).8 The rate acceleration
by 1a can be rationalized by the facile formation of a stable dimer
of 1a through hydrogen bonding in nonpolar media.
The X-ray structure of Ni(Salen) complex 3a clearly showed
self-assembly through hydrogen bonding (Figure 2). The self-
assembled dimer adopts the “head-to-tail” conformation where the
metal-metal distance is 4.054 Å. To verify the hydrogen-bonding
event in solution, 1H experiments were performed with metal-free
salen ligand 2a.8,13 When 25% v/v CD3NO2 in CDCl3 was used as
a media which is similar to the actual Henry reaction conditions,
the NH proton signal of the pivalamide group and the signals of
three protons of the pyridine ring in the ligand 2a were changed
upon variation of concentration (0.14-19.09 mM).14 The dimer-
ization constant Kdim of self-assembled salen ligand 2a was
estimated as 53 ( 21 M-1 by using nonlinear curve fitting
methods.15 These solution-phase 1H experiments confirm the
hydrogen-bonding interaction in the pyridone-aminopyridine func-
tionalized-salen ligand 2a.
(2) Review: (a) Ma, J.-A.; Cahard, D. Angew. Chem., Int. Ed. 2004, 43, 4566.
Selected examples on chiral bimetallic catalysts: (b) Lundgren, S.;
Wingstrand, E.; Penhoat, M.; Moberg, C. J. Am. Chem. Soc. 2005, 127,
11592. (c) Kanai, M.; Kato, N.; Ichikawa, E.; Shibasaki, M. Pure Appl.
Chem. 2005, 77, 2047. (d) Handa, S.; Nagawa, K.; Sohtome, Y.; Matsunaga,
S.; Shibasaki, M. Angew. Chem., Int. Ed. 2008, 47, 3230. (e) Trost, B. M.;
Lupton, D. W. Org. Lett. 2007, 9, 2023.
(3) (a) Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996,
118, 10924. (b) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N.
Science 1997, 277, 936. Detailed mechanistic study, see: (c) Nielsen,
L. P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen, E. N. J. Am. Chem.
Soc. 2004, 126, 1360.
(4) (a) Konsler, R. G.; Karl, J.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120,
10780. (b) Ready, J. M.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2002, 41,
1374. (c) Breinbauer, R.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2000,
39, 3604. (d) Annis, D. A.; Jacobsen, E. N. J. Am. Chem. Soc. 1999, 121,
4147. (e) Zheng, X.; Jones, C. W.; Weck, M. J. Am. Chem. Soc. 2007,
129, 1105. (f) Gianneschi, N. C.; Cho, S.-H.; Nguyen, S. T.; Mirkin, C. A.
Angew. Chem., Int. Ed. 2004, 43, 5503.
(5) Reviews on supramolecular catalysts: (a) Cacciapaglia, R.; Di Stefano, S.;
Mandolini, L. Acc. Chem. Res. 2004, 37, 113. (b) Sanders, J. K. M.
Chem.sEur. J. 1998, 4, 1378.
(6) Selected examples of supramolecular catalysts using hydrogen-bonding
interactions: (a) Ohshima, S.; Tamura, N.; Nabeshima, T.; Yano, Y. Chem.
Commun. 1993, 712. (b) Ohsaki, K.; Konishi, K.; Aida, T. Chem. Commun.
2002, 1690. (c) Chen, J.; Rebek, J., Jr Org. Lett. 2002, 4, 327. (d) Thomas,
C. M.; Ward, T. R. Chem. Soc. ReV. 2005, 34, 337. (e) Breit, B.; Seiche,
W. Angew. Chem., Int. Ed. 2005, 44, 1640. (f) Weis, M.; Waloch, C.;
Seiche, W.; Breit, B. J. Am. Chem. Soc. 2006, 128, 4188. (g) Sandee, A. J.;
van der Burg, A. M.; Reek, J. N. H. Chem. Commun. 2007, 864. (h) Shi,
L.; Wang, X.; Sandoval, C. A.; Li, M.; Qi, Q.; Li, Z.; Ding, K. Angew.
Chem., Int. Ed. 2006, 45, 4108. (i) Jo´nsson, S.; Odille, F. G. J.; Norrby,
P.-O.; Wa¨rnmark, K. Org. Biomol. Chem. 2006, 4, 1927. (j) Clarke, M. L.;
Fuentes, J. A. Angew. Chem., Int. Ed. 2007, 46, 930.
(7) Symmetrical salens are expected to form oligomeric or polymeric aggregates
due to their arrays of hydrogen-bonding donors and acceptors. See:
Ducharme, Y.; Wuest, J. D. J. Org. Chem. 1988, 53, 5787.
(8) See Supporting Information for experimental details.
(9) Recent reviews: (a) Palomo, C.; Oiarbide, M.; Mielgo, A. Angew. Chem.,
Int. Ed. 2004, 43, 5442. (b) Boruwa, J.; Gogoi, N.; Saikia, P. P.; Barua,
N. C. Tetrahedron: Asymmetry 2006, 17, 3315. (c) Palomo, C.; Oiarbide,
M.; Laso, A. Eur. J. Org. Chem. 2007, 2561.
(10) (a) Kogami, Y.; Nakajima, T.; Ikeno, T.; Yamada, T. Synthesis 2004, 1947.
(b) Kowalczyk, R.; Sidorowicz, Ł.; Skarz˙ewski, J. Tetrahedron: Asymmetry
2007, 18, 2581.
(11) The oxidation state of the catalytically active Co species is not clear at
this point. More detailed mechanistic study is needed. See ref 3c.
(12) The formation of a strong heterodimeric species (1b+1c) with two
symmetrical structures is more challenging, because more precise control
of the tether lengths and the torsion angle is necessary.
(13) Use of 1H NMR spectroscopy to determine the dimerization constant of
strong hydrogen-bonding dimers: (a) Wash, P. L.; Maverick, E.; Chiefari,
J.; Lightner, D. A. J. Am. Chem. Soc. 1997, 119, 3802. (b) Corbin, P. S.;
Zimmerman, S. C. J. Am. Chem. Soc. 1998, 120, 9710. (c) Lafitte, V. G. H.;
Aliev, A. E.; Horton, P. N.; Hursthouse, M. B.; Bala, K.; Golding, P.; Hailes,
H. C. J. Am. Chem. Soc. 2006, 128, 6544.
Figure 2. X-ray structure of self-assembled Ni(Salen) complex 3a•3a. The
Ni-Ni distance is 4.054(2) Å. The hydrogen-bonding donor-acceptor
distances are 2.858(7) for N-H--O and 2.922(7) for N--H-N. Disorders
on the cyclohexane rings were removed for clarity.8 Thermal ellipsoids are
drawn at the 50% probability level.
(14) The NH signal of 2-pyridone was not observed due to the peak broadening
in this solvent system.
In conclusion, we have developed a chiral bimetallic Co(II)-
salen catalyst self-assembled through hydrogen bonding, which
results in significant rate acceleration as well as excellent enanti-
oselectivity in Henry reaction. The self-assembly through hydrogen
(15) (a) Conners, K. A. Binding Constants: The Measurement of Molecular
Complex Stability; Wiley: New York, 1987. (b) Sigel, R. K. O.; Freisinger,
E.; Metzger, S.; Lippert, B. J. Am. Chem. Soc. 1998, 120, 12000.
JA807221S
9
J. AM. CHEM. SOC. VOL. 130, NO. 49, 2008 16485