Page 7 of 9
Chemical Science
Please do not adjust margins
Journal Name
synthesis.23 Intermediate
ARTICLE
I
could then undergo an
Conflicts of interest
DOI: 10.1039/D0SC04808A
intermolecular regioselective addition to organoborane-
activated heteroarenes II leading to σH-adduct intermediate III
and IV. Finally, an elimination of hydride anion, a Chichibabin-
type-like process,11 could occur with the assistance of
organoborane to furnish the expected alkylation product
simultaneously regenerate the hydride catalyst to participate
the next catalytic cycle. For the mechanism of alkylation of
pyridine with 1,1-diaryl alkenes, according to the experimental
phenomenon and computational studies, free 1,1-diphenyl
stabilized carbon anion intermediate rather than its
tetradentate benzylorganoborate species might react directly
with intermediate II to provide the product 4 and regenerate
the hydride catalyst. The relatively high loading of NaBEt3H and
BEt3 under the present catalytic conditions might be ascribed to
the ineluctable trace amount of water in the reaction, the
strong interaction of BEt3 with pyridine cores and the
There are no conflicts to declare.
Acknowledgements
We acknowledge the NSFC (21672033, 21801039 , and
21831002), Jilin Educational Committee (JJKH20190269KJ), the
Fundamental Research Funds for the Central Universities, and
Ten Thousand Talents Program for generous financial support.
Notes and references
1
(a) J. W. Daly, H. M. Garraffo and T. F. Spande, in Alkaloids:
Chemical and Biological Perspectives, Vol. 13, (Ed.: W. W.
Pelletier), Elsevier: New York, 1999; 92-104; (b) E. Vitaku, D.
T. Smith and J. T. Njardarson, J. Med. Chem. 2014, 57, 10257-
10274; (c) Y. G. Skrypink and T. F. Doroshenko, Mater. Sci.
1996, 32, 537-544; (d) N. Leclerc, S. Sanaur, L. Galmiche, F.
Mathevet, A.-J. Attias, J. -L. Fave, J. Roussel, P. Hapiot, N.
Lemaître and B. Geffroy, Chem. Mater. 2005, 17, 502-513.
For leading reviews, see: (a) V. Snieckus, Chem. Rev. 1990, 90,
879–933; (b) P. Gros and Y. Fort, Eur. J. Org. Chem. 2002,
3375–3383; (c) M. Schlosser and F. Mongin, Chem. Soc. Rev.
2007, 36, 1161–1172; (d) P. C. Gros and Y. Fort, Eur. J. Org.
Chem. 2009, 4199–4209; (e) M. Ahamed and M. H. Todd, Eur.
J. Org. Chem. 2010, 5935–5942; (f) Y. Nakao, Synthesis 2011,
3209–3219; (g) C.-X. Zhuo, W. Zhang and S.-L. You, Angew.
Chem. Int. Ed. 2012, 51, 12662–12686; (h) J. A. Bull, J. J.
Mousseau, G. Pelletier and A. B. Charette, Chem. Rev. 2012,
112, 2642–2713; (i) Q. Ding, X. Zhou and R. Fan, Org. Biomol.
Chem. 2014, 12, 4807–4815; (j) K. Murakami, S. Yamada, T.
Kaneda and K. Itami, Chem. Rev. 2017, 117, 9302–9332.
(a) J. L. Jeffrey and R. Sarpong, Org. Lett. 2012, 14, 5400-5403;
b) F.-F. Zhuo, W.-W. Xie, Y.-X. Yang, L. Zhang, P. Wang, R. Yuan
and C.-S. Da, J. Org. Chem. 2013, 78, 3243-3249.
For recent reviews on Minisci reaction, see: (a) M. A. J.
Duncton, MedChemComm. 2011, 2, 1135-1161; (b) R. S. J.
Proctor and R. J. Phipps, Angew. Chem. Int. Ed. 2019, 58,
13666–13699; For Selected Examples, See: (c) F. Minisci, R.
Bernardi, F. Bertini, R. Galli and M. Perchinummo,
Tetrahedron. 1971, 27, 3575–3579; (d) Y. Fujiwara, V.
Domingo, I. B. Seiple, R. Gianatassio, M. D. Bel and P. S. Baran,
J. Am. Chem. Soc. 2011, 133, 3292–3295; (e) G. A. Molander,
V. Colombel and V. A. Braz, Org. Lett. 2011, 13, 1852–1855; (f)
D. A. Nagib and D. W. C. MacMillan, Nature 2011, 480, 224–
228; (g) Y. Fujiwara, J. A. Dixon, F. O. Hara, E. D. Funder, D. D.
Dixon, R. A. Rodriguez, R. D. Baxter, B. Herle, N. Sach, M. R.
Collins, Y. Ishihara and P. S. Baran, Nature 2012, 492, 95–99;
(h) A. P. Antonchick and L. Burgmann, Angew. Chem., Int. Ed.
2013, 52, 3267–3271; (i) R. A. Garza-Sanchez, A. Tlahuext-Aca,
G. Tavakoli and F. Glorious, ACS Cat. 2017, 7, 4057–4061;(j)
W. -M. Cheng, R. Shang and Y. Fu, ACS Cat. 2017, 7, 907–911;
(k) R. S. J. Proctor, H. J. Davis and R. J. Phipps, Science 2018,
360, 419–422.
decomposition of BEt3.
Na+ + [BEt3H]-
N
"NaH" + BR3
2
R'
H
BR3
N
+
R
N
NaH
Na
Na
H
R'
R3B
H
R'
BR3
BR3
Na
H
H
H
R'
III
IV
I
H
BR3
H
N
BR3
N
3
4
II
BR3
Scheme 4 Plausible mechanism.
Conclusions
In summary, we have developed the first NaBEt3H-catalyzed
Chichibabin-type alkylation of pyridines with alkenes in the
presence of BEt3 in a perfect atom-economical and regiospecific
fashion. This method allows for facile access an array of
branched C4-alkylation pyridines, without the requirement of
conventional transition metal catalyst, prior formation of N-
activated pyridines, organometallic reagents, and oxidation
process. Moreover, the highly congested all-carbon quaternary
center-containing triarylmethanes could also be efficiently
synthesized. The corresponding mechanism and the key roles of
organoborane were also elaborated by the combination of H/D
scrambling experiments, 11B NMR studies, intermediate
trapping experiments and computational studies. This novel
and mechanically complementary methodology could not only
open a new door for the classical but still infantile Chichibabin-
type reaction, but also set up a new platform for the
development of novel C–C bond-forming methods. Explorations
of the potential of this organoborohydride catalysis for C–C
bond formations is currently underway in our lab.
5
Selected literatures of C2-selectivity, see: (a) R. F. Jordan and
D. F. Taylor, J. Am. Chem. Soc. 1989, 111, 778–779; (b) S.
Rodewald and R. F. Jordan, J. Am. Chem. Soc. 1994, 116, 4491–
4492; (c) M. Murakami and S. Hori, J. Am. Chem. Soc. 2003,
125, 4720–4721; (d) J. C. Lewis, R. G. Bergman and J. A. Ellman,
J. Am. Chem. Soc. 2007, 129, 5332–5333; (e) Y. Nakao, K. S.
Kanyiva and T. Hiyama, J. Am. Chem. Soc. 2008, 130, 2448–
2449; (f) A. M. Berman, J. C. Lewis, R. G. Bergman and J. A.
Ellman, J. Am. Chem. Soc., 2008, 130, 14926–14927; (g) B.-T.
Guan and Z. Hou, J. Am. Chem. Soc. 2011, 133, 18086–18089;
(h) H. Kaneko, H. Nagae, H. Tsurugi and K. Mashima, J. Am.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins