C O M M U N I C A T I O N S
Scheme 4
(2) (a) Tomita, F.; Takahashi, K.; Shimizu, K.-I. J. Antibiot. 1983, 36, 463–467.
(b) Takahashi, K.; Tomita, F. J. Antibiot. 1983, 36, 468–470. (c) Tomita, F.;
Takahashi, K.; Tamaoki, T. J. Antibiot. 1984, 37, 1268–1272.
(3) (a) Fujimoto, K.; Oka, T.; Morimoto, M. Cancer Res. 1987, 47, 1516–1522.
(b) Inaba, S.; Shimoyama, M. Cancer Res. 1988, 48, 6029–6032. (c) Jett,
J. R.; Saijo, N.; Hong, W.-S.; Sasaki, Y.; Takahashi, H.; Nakano, H.; Nakagawa,
K.; Sakurai, M.; Suemasu, K.; Tesada, M. InVest. New Drugs 1987, 5, 155–
159. (d) Chiang, C. D.; Kanzawa, F.; Matsushima, Y.; Nakano, H.; Nakagawa,
K.; Takahashi, H.; Terada, M.; Morinaga, S.; Tsuchiya, R.; Sasaki, Y.
J. Pharmacobiodyn. 1987, 10, 431–435.
(4) (a) Plowman, J.; Dykes, D. J.; Narayanan, V. L.; Abbott, B. J.; Saito, H.;
Hirata, T.; Grever, M. R. Cancer Res. 1995, 55, 862–867. (b) Bunnell, C. A.;
Supko, J. G.; Eder, J. P., Jr.; Clark, J. W.; Lynch, T. J.; Kufe, D. W.; Shulman,
L. N. Cancer Chemother. Pharmacol. 2001, 48, 347–355.
(5) (a) Ryan, D. P.; Supko, J. G.; Eder, J. P.; Seiden, M. V.; Demetri, G.; Lynch,
T. J.; Fischman, A. J.; Davis, J.; Jimeno, J.; Clark, J. W. Clin. Cancer Res.
2001, 7, 231–242. (b) Sessa, C.; De Braud, F.; Perotti, A.; Bauer, J.; Curigliano,
G.; Noberasco, C.; Zanaboni, F.; Gianni, L.; Marsoni, S.; Jimeno, J.; D’Incalci,
M.; Dall′o´, E.; Colombo, N. J. Clin. Oncol. 2005, 23, 1867–1874.
(6) Gallerani, E.; Yap, T. A.; Lopez, A.; Coronado, C.; Shaw, H.; Florez, A.; de
las Heras, B.; Corte´s-Funes, H.; de Bono, J.; Paz-Ares, L. J. Clin. Oncol.,
ASCO Meeting Abstr. 2007, 25, 2517.
(7) Ashley, E. R.; Cruz, E. G.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 15000–
15001.
(8) Gilmore, C. D.; Allan, K. M.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130,
1558–1559.
(9) Shortly after our report, Blackburn and Ramtohul disclosed a preparation of
both isoquinolines and benzocyclobutanes using CsF as the fluoride source;
see: Blackburn, T.; Ramtohul, Y. K. Synlett 2008, 1159–1164.
(10) For the total synthesis of (()-quinocarcin, see: Fukuyama, T.; Nunes, J. J.
J. Am. Chem. Soc. 1988, 110, 5196–5198.
(11) For asymmetric total syntheses of (-)-quinocarcin, see:(a) Garner, P.; Ho,
W. B.; Shin, H. J. Am. Chem. Soc. 1992, 114, 2767–2768. (b) Garner, P.;
Ho, W. B.; Shin, H. J. Am. Chem. Soc. 1993, 115, 10742–10753. (c) Katoh,
T.; Kirihara, M.; Nagata, Y.; Kobayashi, Y.; Arai, K.; Minami, J.; Terashima,
S. Tetrahedron 1994, 50, 6239–6258. (d) Kwon, S.; Myers, A. G. J. Am.
Chem. Soc. 2005, 127, 16796–16797. (e) Wu, Y.-C.; Liron, M.; Zhu, J. J. Am.
Chem. Soc. 2008, 130, 7148–7152.
over Pd on C that afforded a 3.3:1 mixture of unstable diastereomeric
dihydroisoquinolines (18a and 18b).20 Treatment of this mixture with
sodium cyanoborohydride resulted in a completely stereoselective reduction
to produce an equivalent ratio of separable tetrahydroisoquinolines (19a
and 19b), the major diastereomer of which corresponds to the stereo-
chemistry of the target alkaloid.21 Upon heating, the newly formed
secondary amine selectively condensed with one of the two neighboring
esters to form lactam 20 in 99% yield. In light of the slow benzyl group
hydrogenolysis implicit in the success of the previous heterogeneous
reduction, the more active Pearlman’s catalyst was required to remove
the two protecting groups and subsequently methylate the unmasked
amine, providing tetracycle 21. In the final two steps, saponification of
the methyl ester was followed by a partial reduction of the lactam under
dissolving metal conditions.11a,b,e,22 Treatment of the resulting hemiaminal
with 1 N HCl resulted in closure of the oxazolidine ring and completion
of (-)-quinocarcin (1).
In summary, we successfully completed a short asymmetric total
synthesis of (-)-quinocarcin (1) in 10% overall yield via a longest linear
sequence of 11 steps from known compounds (13 steps from commercially
available materials). By applying our aryne annulation technology toward
the construction of key isoquinoline intermediate 9, we are able to assemble
the core of the molecule in only five steps and advance this material to the
natural product target along the shortest synthetic route reported to date.
We are currently investigating the application of this methodology toward
the synthesis of additional members of the tetrahydroisoquinoline antitumor
antibiotic family and will report these efforts in due course.
(12) For synthetic work toward quinocarcin, see: (a) Danishefsky, S. J.; Harrison,
P. J.; Webb, R. R., II; O’Neill, B. T. J. Am. Chem. Soc. 1985, 107, 1421–
1423. (b) Saito, H.; Hirata, T. Tetrahedron Lett. 1987, 28, 4065–4068. (c)
Lessen, T. A.; Demko, D. M.; Weinreb, S. M. Tetrahedron Lett. 1990, 31,
2105–2108. (d) Allway, P. A.; Sutherland, J. K.; Joule, J. A. Tetrahedron
Lett. 1990, 31, 4781–4782. (e) Saito, S.; Tamura, O.; Kobayashi, Y.; Matsuda,
F.; Katoh, T.; Terashima, S. Tetrahedron 1994, 50, 6193–6208. (f) Saito,
S.; Tanaka, K.; Nakatani, K.; Matsuda, F.; Katoh, T.; Terashima, S. Tetrahe-
dron 1994, 50, 6209–6220. (g) Katoh, T.; Nagata, Y.; Kobayashi, Y.; Arai,
K.; Minami, J.; Terashima, S. Tetrahedron 1994, 50, 6221–6238. (h) Katoh,
T.; Kirihara, M.; Yoshino, T.; Tamura, O.; Ikeuchi, F.; Nakatani, K.; Matsuda,
F.; Yamada, K.; Gomi, K.; Ashizawa, T.; Terashima, S. Tetrahedron 1994,
50, 6259–6270. (i) Flanagan, M. E.; Williams, R. M. J. Org. Chem. 1995,
60, 6791–6797. (j) McMills, M. C.; Wright, D. L.; Zubkowski, J. D.; Valente,
E. J. Tetrahedron Lett. 1996, 37, 7205–7208. (k) Koepler, O.; Laschat, S.;
Baro, A.; Fischer, P.; Miehlich, B.; Hotfilder, M.; le Viseur, C. Eur. J. Org.
Chem. 2004, 3611–3622. (l) Schneider, U.; Pannecoucke, X.; Quirion, J.-C.
Synlett 2005, 1853–1856.
(13) Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 12, 1211–1214.
(14) The reaction protocol for this dipolar cycloaddition is based on the pioneering work
of Joule; see: (a) Kiss, M.; Russell-Maynard, J.; Joule, J. A. Tetrahedron Lett.
1987, 28, 2187–2190. (b) Yates, N. D.; Peters, D. A.; Allway, P. A.; Beddoes,
R. L.; Scopes, D. I. C.; Joule, J. A. Heterocycles 1995, 40, 331–347.
(15) Oxidopyrazinium bromide 13 is prepared in two steps from commercially
available pyruvaldehyde and glycinamide hydrochloride; see: Karmas, G.;
Spoerri, P. E. J. Am. Chem. Soc. 1952, 74, 1580–1584.
(16) Additional metal triflate salts examined include Zn(OTf)2, Sc(OTf)3, and
Sm(OTf)3. However, none provided enamine 11 in greater than 40% yield.
(17) 3-Methoxy-2-(trimethylsilyl)phenyl triflate (17) is prepared in three steps from
3-methoxyphenol; see: Pen˜a, D.; Pe´rez, D.; Guitia´n, E.; Castedo, L. J. Am.
Chem. Soc. 1999, 121, 5827–5828.
(18) Attempts to employ the N-methyl analogue of the tertiary amine in 11 resulted
in decomposition of the corresponding isoquinoline product, presumably
through reaction of this less hindered amine with aryne 10.
(19) Under the best one-step conditions, the reduction of isoquinoline 9 with sodium
cyanoborohydride in 1:50 HCl/MeOH at 23 °C led to a 1.6:1 mixture of
diastereomeric tetrahydroisoquinolines (19a and b) in 46% yield. For a similar
procedure, see ref 11c.
Acknowledgment. The authors thank Abbott, Amgen, Boehringer-
Ingelheim, Bristol-Myers Squibb, Merck, Sigma-Aldrich, and Caltech for
generous funding. Special thanks to Dr. Scott C. Virgil of the Caltech
Center for Catalysis and Chemical Synthesis for helpful discussions.
(20) The diastereomeric ratio was determined by 1H NMR. Remarkably little
hydrogenolysis of the benzyl protecting groups was observed within the first
6 h of this reaction.
(21) Reduction of either dihydroisoquinoline diastereomer (18a or b) is observed
to be completely stereoselective for the formation of the syn-5,11a-tetrahy-
droisoquinoline (19a and b) following installation of the stereocenter at C(5).
For a similar example of asymmetric induction, see: Ishida, A.; Fujii, H.;
Nakamura, T.; Oh-ishi, T.; Aoe, K.; Nishibata, Y.; Kinumaki, A. Chem. Pharm.
Bull. 1986, 34, 1994–2006.
Supporting Information Available: Experimental details. This
References
(22) Evans, D. A.; Illig, C. R.; Saddler, J. C. J. Am. Chem. Soc. 1986, 108, 2478–2479.
(1) For a comprehensive review of the chemistry and biology of the tetrahydroiso-
quinoline alkaloids, see: Scott, J. D.; Williams, R. M. Chem. ReV. 2002, 102,
1669–1730.
JA808112Y
9
J. AM. CHEM. SOC. VOL. 130, NO. 51, 2008 17271