A. Raghavan et al. / Bioorg. Med. Chem. Lett. 18 (2008) 5982–5986
5985
Figure 3. Profile of proteins targeted by fatty acid-based chemical probes in various cell types. Fatty acid probes 3, 4 and 6 were administered at 50 mM for 1 h. Cell lysates
were prepared and analyzed for selective protein labeling as described in Figure 2. HeLa, cervical cancer cells; DC2.4, murine monocytes; Jurkat, human T cell lymphoma; NIH
3T3, murine fibroblasts; RAW 264.7, murine macrophages.
ophosphonate probe alk-14-MFP (6) effectively labeled cPLA2 at
the expected molecular weight (ꢀ96 kDa) as visualized by click
chemistry/in-gel fluorescence scanning and Western blot analysis
of cPLA2 protein (Fig. 4). These results demonstrate that our
chemical probes can efficiently label fatty acid-associated pro-
teins/enzymes in cells.
Our studies with the fatty acid-based chemical probes describe
progress towards new chemical tools for targeting lipid-associ-
ated proteins in living cells. The global identification of specific
proteins labeled by our chemical probes is currently underway
and should afford important insight into the reactivity profile of
AOMKs and fluorophosphonate group in cells. These studies
should complement the analysis of other electrophilic chemical
probes17,5 as well as fatty acid chemical reporters that target
fatty-acylated proteins.32 The ability to profile the expression/
activity of fatty acid-associated proteins/enzymes in living cells
should provide new opportunities to dissect their functions in
physiology and disease.
Acknowledgments
The authors thank Prof. Ben Cravatt and Prof. Dale Boger for the
opportunity to participate in this issue honoring Prof. Cravatt as
one of the 2008 Tetrahedron Young Investigators. This work was
supported by The Rockefeller University and Irma T. Hirschl/Mon-
ique Weil-Caulier Trust. A.R. thanks the New York Community
Trust-Heiser Grant for a post-doctoral fellowship.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. van Meer, G.; Voelker, D. R.; Feigenson, G. W. Nat. Rev. Mol. Cell. Biol. 2008, 9,
112.
2. Sprong, H.; van der Sluijs, P.; van Meer, G. Nat. Rev. Mol. Cell. Biol. 2001, 2, 504.
3. Linder, M. E.; Deschenes, R. J. Nat. Rev. Mol. Cell. Biol. 2007, 8, 74.
4. Sadaghiani, A. M.; Verhelst, S. H.; Bogyo, M. Curr. Opin. Chem. Biol. 2007, 11, 20.
5. Cravatt, B. F.; Wright, A. T.; Kozarich, J. W. Annu. Rev. Biochem. 2008, 77, 383.
6. Evans, M. J.; Cravatt, B. F. Chem. Rev. 2006, 106, 3279.
7. Kukar, T. L.; Ladd, T. B.; Bann, M. A.; Fraering, P. C.; Narlawar, R.; Maharvi, G. M.;
Healy, B.; Chapman, R.; Welzel, A. T.; Price, R. W.; Moore, B.; Rangachari, V.;
Cusack, B.; Eriksen, J.; Jansen-West, K.; Verbeeck, C.; Yager, D.; Eckman, C.; Ye,
W.; Sagi, S.; Cottrell, B. A.; Torpey, J.; Rosenberry, T. L.; Fauq, A.; Wolfe, M. S.;
Schmidt, B.; Walsh, D. M.; Koo, E. H.; Golde, T. E. Nature 2008, 453, 925.
8. Weihofen, A.; Binns, K.; Lemberg, M. K.; Ashman, K.; Martoglio, B. Science 2002,
296, 2215.
9. Sieber, S. A.; Niessen, S.; Hoover, H. S.; Cravatt, B. F. Nat. Chem. Biol. 2006, 2,
274.
10. Qiu, W. W.; Xu, J.; Li, J. Y.; Li, J.; Nan, F. J. Chembiochem 2007, 8, 1351.
11. Chan, E. W.; Chattopadhaya, S.; Panicker, R. C.; Huang, X.; Yao, S. Q. J. Am. Chem.
Soc. 2004, 126, 14435.
12. Salisbury, C. M.; Cravatt, B. F. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 1171.
13. Salisbury, C. M.; Cravatt, B. F. J. Am. Chem. Soc. 2008, 130, 2184.
14. Evans, M. J.; Saghatelian, A.; Sorensen, E. J.; Cravatt, B. F. Nat. Biotechnol. 2005,
23, 1303.
15. Patricelli, M. P.; Szardenings, A. K.; Liyanage, M.; Nomanbhoy, T. K.; Wu, M.;
Weissig, H.; Aban, A.; Chun, D.; Tanner, S.; Kozarich, J. W. Biochemistry 2007, 46,
350.
16. Cohen, M. S.; Zhang, C.; Shokat, K. M.; Taunton, J. Science 2005, 308, 1318.
17. Weerapana, E.; Simon, G. M.; Cravatt, B. F. Nat. Chem. Biol. 2008.
18. Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13.
19. Speers, A. E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem. Soc. 2003, 125, 4686.
20. Speers, A. E.; Cravatt, B. F. Chem. Biol. 2004, 11, 535.
21. Hang, H. C.; Loureiro, J.; Spooner, E.; van der Velden, A. W.; Kim, Y. M.;
Pollington, A. M.; Maehr, R.; Starnbach, M. N.; Ploegh, H. L. ACS Chem. Biol.
2006, 1, 713.
22. Reddie, K. G.; Seo, Y. H.; Muse Iii, W. B.; Leonard, S. E.; Carroll, K. S. Mol. Biosyst.
2008, 4, 521.
23. Kato, D.; Boatright, K. M.; Berger, A. B.; Nazif, T.; Blum, G.; Ryan, C.; Chehade, K.
A.; Salvesen, G. S.; Bogyo, M. Nat. Chem. Biol. 2005, 1, 33.
Figure 4. Chemical probe labeling of fatty acid-associated enzyme, cPLA2. Fatty
acid-based chemical probes 3, 4 and 6 were administered at 50 mM for 1 h in HeLa
cells. HeLa lysates and cPLA2 immunoprecipitates were analyzed by click chemis-
try/in-gel fluorescence scanning as described in Figure 2 (upper panel). The amount
of cPLA2 in cell lysates and immunoprecipitates were analyzed by Western blot
(lower panel).