Synthesis of 1,1-Disubstituted Alkyl Vinyl Sulfides
TABLE 1. Scope of Hydrothiolation of Aryl Alkynes with
Benzylthiol Catalyzed by I
FIGURE 1. Complex I, Tp*Rh(PPh3)2.
hydrothiolation. Accordingly, we recently reported that Wilkin-
son’s catalyst7n and Tp*Rh(PPh3)2 (I, Figure 1)8 are excellent
catalysts for alkyne hydrothiolation using alkyl thiols to generate
the E-linear and branched alkyl vinyl sulfides, respectively. In
the latter case, the formation of the branched isomer is a
significant departure from the regioselectivity obtained with
other group 9 metal complexes using aryl thiols.7 Given the
apparent generality of the process, we sought to study the
hydrothiolation reaction in greater detail.
We have recently reported a detailed analysis of the ligand
requirements of the pyrazolylborate ligand, along with solution
and solid phase structures of the resulting rhodium complexes.9
Both 3,5-dimethyl pyrazolylborate (Tp*) and 3-phenyl-5-methyl
pyrazolylborate (TpPh,Me) were found to be superior to other
ligands studied. Given the inherent difficulties associated with
the synthesis and purification of the TpPh,Me ligand and resulting
rhodium complex, we elected to use Tp*Rh(PPh3)2 for further
study. We report herein the results of a systematic exploration
of the scope and limitations of hydrothiolation using this catalyst.
Results and Discussion
Our first objective was to evaluate the range of terminal
alkynes that could act as suitable substrates in hydrothiolation.
(4) (a) Paris, J. M.; Barriere, J. C.; Smith, C.; Bost, P. E. In Recent Progress
in the Chemical Synthesis of Antibiotics; Lucas, G., Ohno, M., Eds.; Springer-
Verlag: Berlin, 1990; pp 183-248. (b) Di Giambattista, M.; Chinali, G.; Cocito,
C. J. Antimicrob. Chemother. 1989, 24, 485–488. (c) Cocito, C. Microbiol. ReV.
1979, 43, 145–169.
(5) Radical reactions: (a) Oswald, A. A.; Griesbaum, K.; Hudson, B. E.;
Bregman, J. M. J. Am. Chem. Soc. 1964, 86, 2877–2884. (b) Griesbaum, K.
Angew. Chem., Int. Ed. 1970, 9, 270. (c) Patai, S., Ed.; In The Chemistry of the
Thiol Group; John Wiley & Sons, Ltd.: London, 1974, 2. (d) Ichinose, Y.;
Wakamatsu, K.; Nozaki, K.; Birbaum, J. L.; Oshima, K.; Utimoto, K. Chem.
Lett. 1987, 1647–1650. (e) Capella, L.; Montevecchi, P. C.; Navacchia, M. L. J.
Org. Chem. 1996, 61, 6783–6789.
(6) Nucleophilic reactions: (a) Truce, W. E.; Simms, J. A. J. Am. Chem.
Soc. 1956, 78, 2756–2759. (b) Carson, J. F.; Boggs, L. E. J. Org. Chem. 1966,
31, 2862–2864. (c) Truce, W.; Tichenor, G. J. W. J. Organomet. Chem. 1972,
37, 2391–2396. (d) Katritzky, A. R.; Ramer, W. H.; Ossana, A. J. Org. Chem.
1985, 50, 847–852. (e) Kondoh, A.; Takami, K.; Yorimitsu, H.; Oshima, K. J.
Org. Chem. 2005, 70, 6468–6473.
a Reaction conditions: 10 mmol alkyne, 11 mmol thiol, 4 mL of 1:1
DCE:PhCH3, and 0.3 mmol (3 mol %) catalyst, at room temperature for
2 h, unless otherwise noted. b Isolated yields. c Reference 7. d An
additional ∼5-10% of an unidentified byproduct was observed.
e Reaction time 24 h. Yield after 2 h is 10%.
(7) Metal-catalyzed reactions: using Mo: (a) McDonald, J. W.; Corbin, J. L.;
Newton, W. E. Inorg. Chem. 1976, 15, 2056–2061using Pd: (b) Ba¨ckvall, J. E.;
Ericsson, A. J. Org. Chem. 1994, 59, 5850–5851. (c) Gabriele, B.; Salerno, G.;
Fazio, A. Org. Lett. 2000, 2, 351–353. (d) Ananikov, V. P.; Orlov, N. V.;
Beletskaya, I. P.; Khrustalev, V. N.; Antipin, M. Y.; Timofeeva, T. V. J. Am.
Chem. Soc. 2007, 129, 7252–7253. (e) Kondoh, A.; Yorimitsu, H.; Oshima, K.
Org. Lett. 2007, 9, 1383–1385using Pd, Rh, Ni, and Pt: (f) Kuniyasu, H.; Ogawa,
A.; Sato, K. I.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1992, 114,
5902–5903. (g) Ogawa, A.; Ikeda, T.; Kimura, K.; Hirao, T. J. Am. Chem. Soc.
1999, 121, 5108–5114using Rh and Ir: (h) Burling, S.; Field, L. D.; Messerle,
B. A.; Vuong, K. Q.; Turner, P. J. Chem. Soc., Dalton Trans. 2003, 4181–
4191using Ni: (i) Ananikov, V. P.; Malyshev, D. A.; Beletskaya, I. P.;
Aleksandrov, G. G.; Eremenko, I. L. AdV. Synth. Catal. 2005, 347, 1993–2001.
(j) Ananikov, V. P.; Zalesskiy, S. S.; Orlov, N. V.; Beletskaya, I. P. Russ. Chem.
Bull., Int. Ed. 2006, 55, 2109–2113using Ni and Pd: (k) Malyshev, D. A.; Scott,
N. M.; Marion, N.; Stevens, E. D.; Ananikov, V. P.; Beletskaya, I. P.; Nolan,
S. P. Organometallics 2006, 25, 4462–4470. (l) Ananikov, V. P.; Orlov, N. V.;
Beletskaya, I. P. Organometallics 2006, 25, 1970–1977using Rh: (m) Misumi,
Y.; Seino, H.; Yasushi, M. J. Organomet. Chem. 2006, 691, 3157–3164. (n)
Shoai, S.; Bichler, P.; Kang, B.; Buckley, H.; Love, J. A. Organometallics 2007,
26, 5602–5611. (o) Silva, M.; Lara, R.; Marczewski, J.; Jacob, R.; Lenardao,
E.; Perin, G. Tetrahedron Lett. 2008, 49, 1927–1930.
Benzylthiol, which had been previously shown to react rapidly
and regioselectively with six different alkynes,8 was selected
for initial study. In a typical experiment, PhCH3 (2 mL), DCE
(2 mL) and Tp*Rh(PPh3)2 (280 mg, 0.30 mmol, 3 mol %) were
combined in a 20 mL vial equipped with a magnetic stir bar
and a screw cap. Benzylthiol (1.3 mL, 11 mmol, 1.1 equiv
relative to alkyne) and alkyne (10 mmol, 2.5 M) were then added
and the solution was stirred at room temperature for 2 h. The
choice of a 2 h time limit allowed for the direct comparison of
alkyne reactivity.
The effect of electronics on reactivity and selectivity was
revealed by examining para-substituted phenylacetylenes (Table
1, entries 1-6). All reactions proceeded with high regioselec-
tivity to provide the corresponding branched alkyl vinyl sulfides,
indicating that substitution had little impact on regioselectivity.
In marked contrast, both reaction efficiency and yield were
(8) Cao, C.; Fraser, L. R.; Love, J. A. J. Am. Chem. Soc. 2005, 127, 17614–
17615.
(9) Fraser, L. R.; Bird, J.; Wu, Q.; Cao, C.; Patrick, B. O.; Love, J. A.
Organometallics 2007, 26, 5778–5781.
J. Org. Chem. Vol. 74, No. 1, 2009 183