applications in synthesis,13 catalysis,14 and medicinal chem-
istry.15
Table 1. Catalytic Imination of Methyl p-Tolyl Sulfide 3a
Several synthetic strategies have been developed for the
preparation of these chiral sulfur derivatives, and among
these, direct oxidative imination is by far the most studied
methodology.8d Various nitrogen sources16 such as
chloramines16a-c and azides16d-f can be used for these
transformation, but the most significant achievements have
been realized starting from iminoiodanes in combination with
a transition metal catalyst.17 Copper salts have been found
to be optimal in this context,17a-d but manganese,17e
rhodium,17f,i silver,17g,i or iron17h,i complexes are also
efficient catalysts. Surprisingly, a limited number of studies
have been dedicated to the stereoselective imination of
sulfides and sulfoxides using hypervalent iodine
entry
temp (°C)
solvent
yield (%)
dea
1
2
3
4
5
6
7
8
-35
-78
-50
25
-35
-35
-35
-35
(CH2Cl)2/MeOH 3:1
(CH2Cl)2/MeOH 3:1
(CH2Cl)2/MeOH 3:1
(CH2Cl)2/MeOH 3:1
(CH2Cl)2
(CH2Cl)2/MeOH 1:1
(CH2Cl)2/MeOH 3:1
(CH2Cl)2/MeOH 3:1
93
92
92
94
75
88
88
93
70
62
66
50
40
48
b
80c
a Determined by 1H NMR. b Three days at -35 °C without the
rhodium(II) catalyst 1. c Using 10 mol % of catalyst 1 and adding
hypervalent iodine reagent via syringe pump over 1 h.
(9) (a) Mock, W. L.; Tsay, J.-T. J. Am. Chem. Soc. 1989, 111, 4467–
4472. (b) Koizumi, M.; Hiratake, J.; Nakatsu, T.; Kato, H.; Oda, J. J. Am.
Chem. Soc. 1999, 121, 5799–5800. (c) Bolm, C.; Moll, G.; Kahmann, J. D.
Chem. Eur. J. 2001, 7, 1118–1128. (d) Kahraman, M.; Sinishtaj, S.; Dolan,
P. M.; Kensler, T. W.; Peleg, S.; Saha, U.; Chuang, S. S.; Bernstein, G.;
Korczak, B.; Posner, G. H. J. Med. Chem. 2004, 47, 6854–6863. (e) For a
recent review, see: Worch, C.; Mayer, A. C.; Bolm, C. In Organosulfur
Chemistry in Asymmetric Synthesis; Toru, T., Bolm, C., Eds.; Wiley-VCH:
Weinheim, 2008; pp 209-229.
reagents,17d,e,18,19 and in all cases the combined yields and
selectivities range from low to moderate with substrates
sometimes used in excess.
(10) Kirsch, P.; Lenges, M.; Ku¨hne, D.; Wanczek, K.-P. Eur. J. Org.
Chem. 2005, 797–802.
(11) (a) Trost, B. M.; Matsuoka, R. T. Synlett 1992, 27–30. (b) Reggelin,
M.; Weinberger, H.; Gerlach, M.; Welcker, R. J. Am. Chem. Soc. 1996,
118, 4765–4777. (c) Reggelin, M.; Junker, B.; Heinrich, T.; Slavik, S.;
Bu¨hle, P. J. Am. Chem. Soc. 2006, 128, 4023–4034. (d) Schleusner, M.;
Gais, H.-J.; Koep, S.; Raabe, G. J. Am. Chem. Soc. 2002, 124, 7789–7800.
(e) Ko¨hler, F.; Gais, H.-J.; Raabe, G. Org. Lett. 2007, 9, 1231–1234. (f)
Harmata, M.; Hong, X. J. Am. Chem. Soc. 2003, 125, 5754–5756. (g)
Harmata, M.; Hong, X. Org. Lett. 2005, 7, 3581–3583. (h) Craig, D.;
Grellepois, F.; White, A. J. P. J. Org. Chem. 2005, 70, 6827–6832.
(12) (a) Johnson, C. R.; Stark, C. J. Tetrahedron Lett. 1979, 20, 4713–
4716. (b) Bolm, C.; Simic, O. J. Am. Chem. Soc. 2001, 123, 3830–3831.
(c) Harmata, M.; Ghosh, S. K. Org. Lett. 2001, 3, 3321–3323. (d) Moessner,
C.; Bolm, C. Angew. Chem. Int. Ed. 2005, 44, 7564–7567. (e) For a recent
review, see: Bolm, C. In Asymmetric Synthesis with Chemical and Biological
Methods; Enders, D., Jaeger, K.-E., Eds.; Wiley-VCH: Weinheim, 2007;
pp 149-176.
We have recently reported the use of sulfonimidamides
for the generation of chiral nitrenes and their subsequent
metal-catalyzed insertion into CdC20a and C-H bonds.20b,c
In all cases, high yields were obtained starting from
stoichiometric amounts of alkenes and alkanes as a conse-
quence of the high reactivity of the nitrene species. More
importantly, the matched combination of the sulfonimidamide
and a chiral rhodium catalyst proved optimal to induce
selective benzylic and allylic C-H aminations with stereo-
selectivities generally above 90%.20b,c Thus, these results
combined with previous observations convinced us to explore
the stereoselective imination of sulfides using chiral nitrenes
derived from sulfonimidamides.
(13) (a) Ruano, J. L. G.; Alemparte, C.; Clemente, F. R.; Gutie´rrez,
L. G.; Gordillo, R.; Martin Castro, A. M.; Rodriguez Ramos, J. H. J. Org.
Chem. 2002, 67, 2919–2925. (b) Padwa, A.; Nara, S.; Wang, Q. J. Org.
Chem. 2005, 70, 8538–8549. (c) Marino, J. P.; Zou, N. Org. Lett. 2005, 7,
1915–1917. (d) Raghavan, S.; Mustafa, S. Tetrahedron Lett. 2008, 49, 3216–
3220.
Application of the previously determined optimal condi-
tions for C-H amination to methyl p-tolyl sulfide 3a, i.e.,
combining 3 mol % of Rh2{(S)-nta}4 1 with 1.2 equiv of
(S)-N-(p-toluenesulfonyl)-p-toluenesulfonimidamide 2 in the
presence of 1.4 equiv of PhI(OCOt-Bu)2 in a 3:1 mixture of
1,1,2,2-tetrachloroethane/methanol at -35 °C for 3 days,20c
allowed us to isolate the corresponding sulfilimine 4a with
a very good yield of 93% and a diastereoselectivity of 70%
(Table 1, entry 1).
(14) Thakur, V. V.; Ramesh Kumar, N. S. C.; Sudalai, A. Tetrahedron
Lett. 2004, 45, 2915–2918.
(15) (a) Andersen, K. K.; Bhattacharyya, J.; Mukhopadhyay, S. K.
J. Med. Chem. 1970, 13, 759–760. (b) Strekowski, L.; Henary, M.; Kim,
N.; Michniak, B. B. Bioorg. Med. Chem. Lett. 1999, 9, 1033–1034.
(16) (a) Aujla, P. S.; Baird, C. P.; Taylor, P. C.; Mauger, H.; Valle´e, Y.
Tetrahedron Lett. 1997, 38, 7453–7456. (b) Takada, H.; Ohe, K.; Uemura,
S. Angew. Chem., Int. Ed. 1999, 38, 1288–1289. (c) Marzinzik, A. L.;
Sharpless, K. B. J. Org. Chem. 2001, 66, 594–596. (d) Bach, T.; Ko¨rber,
C. Eur. J. Org. Chem. 1999, 103, 3–1039. (e) Murakami, M.; Uchida, T.;
Katsuki, T. Tetrahedron Lett. 2001, 42, 7071–7074. (f) Tamura, Y.; Uchida,
T.; Katsuki, T. Tetrahedron Lett. 2003, 44, 3301–3303. (g) Tomooka, C. S.;
Carreira, E. M. HelV. Chim. Acta 2002, 85, 3773–3784. (h) Siu, T.; Yudin,
A. K. Org. Lett. 2002, 4, 1839–1842. (i) Garcia Mancheno, O.; Bistri, O.;
Bolm, C. Org. Lett. 2007, 9, 3809–3811.
NMR studies indicated that consumption of starting
material was in fact complete after only 5 h, 4a being isolated
with the same yield and de as before. This shorter reaction
time encouraged us to screen the reaction temperature in
(17) (a) Mu¨ller, J. F. K.; Vogt, P. Tetrahedron Lett. 1998, 39, 4805–
4806. (b) Lacoˆte, E.; Amatore, M.; Fensterbank, L.; Malacria, M. Synlett
2002, 116–118. (c) Cren, S.; Kinahan, T. C.; Skinner, C. L.; Tye, H.
Tetrahedron Lett. 2002, 43, 2749–2751. (d) Lakshmi Kantam, M.; Kavita,
B.; Neeraja, V.; Haritha, Y.; Chaudhuri, M. K.; Dehury, S. K. AdV. Synth.
Catal. 2005, 347, 641–645. (e) Nishikori, H.; Ohta, C.; Oberlin, E.; Irie,
R.; Katsuki, T. Tetrahedron 1999, 55, 13937–13946. (f) Okamura, H.; Bolm,
C. Org. Lett. 2004, 6, 1305–1307. (g) Cho, G. Y.; Bolm, C. Org. Lett.
2005, 7, 4983–4985. (h) Garcia Mancheno, O.; Bolm, C. Org. Lett. 2006,
8, 2349–2352. (i) Garcia Mancheno, O.; Bolm, C. Chem. Eur. J. 2007, 13,
6674–6681.
(18) Takada, H.; Nishibayashi, Y.; Ohe, K.; Uemura, S.; Baird, C. P.;
Sparey, T. J.; Taylor, P. C. J. Org. Chem. 1997, 62, 6512–6518
(19) Leca, D.; Toussaint, A.; Mareau, C.; Fensterbank, L.; Lacoˆte, E.;
Malacria, M. Org. Lett. 2004, 6, 3573–3575
.
.
(20) (a) Di Chenna, P.; Robert-Peillard, F.; Dauban, P.; Dodd, R. H.
Org. Lett. 2004, 6, 4503–4505. (b) Liang, C.; Robert-Peillard, F.; Fruit, C.;
Mu¨ller, P.; Dodd, R. H.; Dauban, P. Angew. Chem., Int. Ed. 2006, 45, 4641–
4644. (c) Liang, C.; Collet, F.; Robert-Peillard, F.; Mu¨ller, P.; Dodd, R. H.;
Dauban, P. J. Am. Chem. Soc. 2008, 130, 343–350
.
5474
Org. Lett., Vol. 10, No. 23, 2008