264
Organometallics 2009, 28, 264–269
Synthesis and Characterization of Single Thiolato-Bridged
Heterodinuclear Complexes: Irreversible Isomerization of
Cp(CO)2W(µ-SPh)(µ-Cl)Ru(CO)(Cl)(PPh3) to
Cp(CO)(Cl)W(µ-SPh)(µ-Cl)Ru(CO)2(PPh3) via Chloride and
Carbonyl Ligand Migration
Md. Munkir Hossain,† Hsiu-Mei Lin,§ Chih-Min Wang,†,‡ and Shin-Guang Shyu*,†,‡
Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China, Department of Chemistry,
National Central UniVersity, Chungli, Taiwan, Republic of China, and Institute of Bioscience and
Biotechnology, National Taiwan Ocean UniVersity, Keelung, Taiwan, Republic of China
ReceiVed August 15, 2008
Reaction between CpW(CO)3SPh and RuCl2(PPh3)x (x ) 3 and 4) in dichloromethane at room temperature
afforded a single thiolato-bridged heterodinuclear complex, Cp(CO)2W(µ-SPh)(µ-Cl)Ru(CO)(Cl)(PPh3) (1)
in high yield. Irreversible isomerization of 1 to Cp(CO)(Cl)W(µ-SPh)(µ-Cl)Ru(CO)2(PPh3) (2), which exists
as a mixture of stereoisomers 2a and 2b, occurs via chloride and carbonyl ligand migration during thermolysis
of 1 in toluene at 80 °C. Compounds 1, 2a, and 2b were characterized by single-crystal X-ray diffraction
analysis. Migration of π-acceptor carbonyl ligands from W atom to Ru atom during the conversion of
CpW(CO)3SPh + RuCl2(PPh3)3 f 1 f 2 with concomitant migration of σ-donor chloride ligand from Ru to
W atom in 1 is reported.
carbonyl compounds, carbonyl migration between metals is very
common.1 However, significantly fewer studies on carbonyl
migration on heterometallic clusters than those on homometallic
clusters were reported.1 Furthermore, although the reversible
carbonyl ligand migration is usual in metal carbonyl clusters,
the irreversible migration of CO ligand from one metal to
another metal is less common.9
Chloride migration is a unique way to synthesize organic
molecules10 including biological conversion of trichloroethylene
to chloral by cytochrome P-450.11 Chloride ion can form a
bridging bond in clusters, but its migration on clusters and
dinuclear complexes is rare.12,13
Introduction
The dynamic behavior of ligands in fluxional molecules has
been well documented in the last three decades1 and has been
observed for organic, inorganic, and organometallic compounds.
Among them, ligand migration in organometallic complexes
containing metal-metal bonds is of special interest because such
occurrence and rationalization are appropriate models for a better
understanding of ligand migration in clusters and surface
mobility of chemisorbed species.2 Ligand migration occurs in
different ways, and metal to ligand and metal to metal migrations
are more common. Ligands such as acyl,3 alkoxycarbonyl,3e
formyl,3b 3c silyl,4 germyl,5 stannyl,5 plumbyl,5 hydride,6 phos-
,
phinate,7 and phosphorane8 were demonstrated to migrate from
Sulfides and phosphines are usual bridging ligands for binding
different metals. Thiolato-bridged complexes become more
significant over the phosphido-bridged ones when catalytic and
a transition metal to the ligand η5-cyclopentadienyl ring. In metal
* Corresponding author. E-mail: sgshyu@chem.sinica.edu.tw.
† Institute of Chemistry, Academia Sinica.
(4) (a) Pannell, K. H.; Rozell, J. M.; Lii, J.; Tien-Mayr, S.-Y.
Organometallics 1988, 7, 2524. (b) Berryhill, S. R.; Sharenow, B. J.
Organomet. Chem. 1981, 221, 143. (c) Pannell, K. H.; Cervantes, J.;
Parkanyi, L.; Cervantes-Lee, F. Organometallics 1990, 9, 859. (d) Thum,
G.; Ries, W.; Greissinger, D.; Malisch, W. J. Organomet. Chem. 1983,
252, C67. (e) Pannell, K. H.; Cervantes, J.; Hernandez, C.; Casslas, J.;
Vincenti, S. Organometallics 1986, 5, 1056. (f) Sharma, S.; Cervantes, J.;
Mata-Mata, J. L.; Brun, M.-C.; Cervantes-Lee, F.; Pannell, K. H. Orga-
nometallics 1995, 14, 4269.
(5) Cervantes, J.; Vincenti, S. P.; Kappor, R. N.; Pannell, K. H.
Organometallics 1989, 8, 744.
(6) (a) Crocco, G. L.; Gladysz, J. A. J. Am. Chem. Soc. 1988, 110, 6110.
(b) Crocco, G. L.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1985,
283.
(7) Nakazawa, H.; Sone, M.; Miyoshi, K. Organometallics 1989, 8, 1564.
(8) Kubo, K.; Nakazawa, H.; Kawamura, K.; Mizuta, T.; Miyoshi, K.
J. Am. Chem. Soc. 1998, 120, 6715.
(9) (a) Man, M. L.; Zhou, Z.; Ng, S. M.; Lau, C. P. J. Chem. Soc.,
Dalton. Ttrans. 2003, 3727. (b) Metal Clusters in Chemistry; Braunstein,
P., Oro, L. A., Raithby, P. R., Eds.; Wiley, VCH, 1999. (c) Hidai, M.;
Orsaku, M.; Ue, M.; Koyasu, Y.; Kodama, T.; Uchida, Y. Organometallics
1983, 2, 292.
‡ Department of Chemistry, National Central University.
§ Institute of Bioscience and Biotechnology, National Taiwan Ocean
University.
(1) (a) Band, E.; Muetterties, E. L. Chem. ReV. 1978, 78, 639. (b) Shriver,
D. F.; Kaesz, H. D.; Adams, R. D. The Chemistry of Metal Clusters
Complexes; VCH: New York, 1990. (c) Farrugia, L. J. J. Chem. Soc., Dalton
Trans. 1997, 1783. (d) Waterman, S. M.; Humphrey, M. G. Organometallics
1999, 18, 3116. (e) Siegel, J. S.; Baldridge, K. K.; Linden, A.; Dorta, R.
J. Am. Chem. Soc. 2005, 127, 10644. (f) Cadenbach, T.; Gemel, C.; Schmid,
R.; Fischer, R. A. J. Am. Chem. Soc. 2005, 127, 17068. (g) Zenkina, O. V.;
Konstantinovski, L.; Freeman, D.; Shimon, L. J. W.; Vander Boom, M. E.
Inorg. Chem. 2008, 47, 3815.
(2) (a) Muetterties, E. L. Science 1977, 196, 839. (b) Muetterties, E. L.;
Rhodin, T. N.; Band, E.; Brucker, C. F.; Pretzer, W. R. Chem. ReV. 1979,
79, 91.
(3) (a) Heah, P. C.; Gladysz, J. A. J. Am. Chem. Soc. 1984, 106, 7636.
(b) Heah, P. C.; Patton, A. T.; Gladysz, J. A. J. Am. Chem. Soc. 1986, 108,
1185. (c) Milletti, M. C.; Fenske, R. F. Organometallics 1989, 8, 420. (d)
Liebeskind, L. S.; Welker, M. E. Organometallics 1983, 2, 194. (e) Abbott,
S.; Baird, G. J.; Davies, S. G.; Dordor-Hedgecock, I. M.; Marberly, T. R.;
Walker, J. C.; Warner, P. J. Organomet. Chem. 1985, 289, C13.
10.1021/om800789m CCC: $40.75
2009 American Chemical Society
Publication on Web 11/26/2008