854
S. Sreedaran et al. / Spectrochimica Acta Part A 74 (2009) 849–854
nitrophenylphosphate activity of the complexes are obtained and
shown in Fig. 4. The observed initial rate constant values for all the
nickel(II) complexes are given in Table 2. The observed rate constant
values for catalysis of the hydrolysis of 4-nitrophenyl phosphate are
Acknowledgements
Financial support from University Grants Commission (RGN-
SRF), New Delhi, is gratefully acknowledged. We are thankful to
CDRI-Lucknow for providing FAB Mass spectral analysis.
in the range of 1.36 × 10−2–9.14 × 10−2 min−1
.
The catalytic activities of the binuclear complexes are found to
increase as the macrocyclic ring size increases due to the intrinsic
flexibility, i.e. increase in the chelate ring size enhances the rate
constant of hydrolysis fairly well by producing distortion in the
geometry around the metal ion that enhances the accessibility of
the metal ion for the bonding of phosphate and OH groups. The cat-
and L1e) is found to be less than that of the complexes contain-
ing aliphatic diimines. This may be due to the planarity, which is
associated with aromatic ring, imparts less catalytic efficiency due
to the rigidity of the systems as observed in the case of previous
literature reports [35,36,10b]. It is seen that if the reduction poten-
tial is too negative, the complex has a decreased catalytic activity
due to a more difficult reduction to metal(I), and a less negative
reduction potential of the complex gives a higher catalytic activity
since the donor atoms stabilize metal(I) at the expense of metal(II)
[37].
para position to the phenoxide oxygen in the phenyl ring is the rea-
son for the observed higher hydrolysis activity than the complexes
containing electron donating –CH3 groups at the para position
[30–33]. The literature reports [33b] also show that the complexes
containing electron-withdrawing groups shows higher catalytic
activity than complexes, which contain electron donating sub-
stituent.
References
[1] F. Denat, S. Brandès, R. Guilard, Synlett 5 (2000) 561.
[2] P.V. Bernhardt, G.A. Lawrence, Coord. Chem. Rev. 104 (1990) 297.
[3] A. Volbeda, M.-H. Charon, C. Piras, E.C. Hatchikian, M. Frey, J.C. Fontecilla-
Camps, Nature 373 (1995) 580.
[4] S. Brooker, P.D. Croucher, F.M. Roxburgh, J. Chem. Soc., Dalton Trans. (1996)
3031.
[5] E. Jabri, M.B. Carr, R.P. Hausinger, P.A. Karplus, Science 268 (1995) 998.
[6] T. Koga, H. Furutachi, T. Nakamura, N. Fukita, M. Ohba, K. Takahashi, H. Okawa,
Inorg. Chem. 37 (1998) 989.
[7] S. Uozumi, H. Furutachi, M. Ohba, H. Okawa, D.E. Fenton, K. Shindo, S. Murata,
D.J. Kitko, Inorg. Chem. 37 (1998) 6281.
[8] D.E. Fenton, Inorg. Chem. Commun. 5 (2002) 537.
[9] D.E. Fenton, H. Okawa, Perspectives on Bioinorganic Chemistry, JAI Press, Lon-
don, 1993, p. 8.
[10] (a) E.V. Rybak-Akimova, N.W. Alcock, D.H. Bush, Inorg. Chem. 37 (1998) 1563;
(b) M. Thirumavalavan, P. Akilan, M. Kandaswamy, K. Chinnakali, G. Senthil
Kumar, H.K. Fun, Inorg. Chem. 42 (2003) 3308;
(c) T.H. Ahn, J. Kim, L.F. Lindoy, J. Wang, Aust. J. Chem. 52 (1999) 1139.
[11] J.D. Gane, D.E. Fenton, J.M. Latour, A.J. Smith, J. Chem. Soc., Dalton Trans. (1991)
2279.
[12] G. Royal, V.D. Gindrey, S. Dahaowi, A. Tabard, R. Guilard, P. Pullumbi, C. Lecomte,
Eur. J. Org. Chem. (1998) 1971.
[13] D. Gayathri, D. Velmurugan, K. Ravikumar, S. Sreedaran, V. Narayanan, Acta.
Cyst. E62 (2006) o3714.
[14] J. Geary, Coord. Chem. Rev. 7 (1971) 81.
[15] G. Das, R. shukala, S. Mandal, R. Singh, P.K. Bharadwaj, J.V. Singh, K.H. Whitem-
ine, Inorg. Chem. 36 (1997) 323.
[16] R.M. Silverstein, G.C. Bassler, Spectrometric Identification of Organic Com-
pounds, John Wiley & Sons, New York, 1991.
[17] C. Fraser, R. Ostrander, A.L. Rheingold, C. White, B. Bosnich, Inorg. Chem. 33
(1994) 324.
[18] M. Lachkar, R. Guilard, A. Attamani, A.De. Clan, J. Fisher, R. Weiss, Inorg. Chem.
37 (1997) 1575.
3.4. Antimicrobial activities
[19] S.S. Tandon, L.K. Thompson, J.N. Bridson, V. Mekee, A.J. Downard, Inorg. Chem.
31 (1992) 4635.
[20] B. Srinivas, N. Arulsamy, P.S. Zacharias, Polyhedron 10 (1991) 731.
[21] (a) M.F. Cabral, B. Murphy, J. Nelson, Inorg. Chim. Acta 90 (1984) 169;
(b) D. Volkmer, B. Hommerich, K. Griesar, W. Haase, B. Krebs, Inorg. Chem. 35
(1996) 3792.
[22] H. Okawa, S. Kida, Bull. Chem. Soc. Jpn. 45 (1972) 1759.
[23] H. Wada, T. Aono, K. Moodo, m. Ohba, N. Makstumoto, H. Okawa, Inorg. Chem.
Acta 246 (1996) 13.
[24] A. Benzekeri, P. Dubourdeax, J.M. Latour, P. Rey, J. Laugier, J. Chem. Soc., Dalton
Trans. (1991) 3359.
tested by following our earlier literature reports [29]. We have
evaluated the antifungal activity of all the nickel(II) complexes
against the human pathogenic fungus Candida albicans. The screen-
ing data were reported in Table 3. From the results, it is observed
that all tested complexes show some antifungal activity com-
parable with the N-substituted tetraazamacrocycles [38]. The
binuclear nickel(II) complexes of L1d and L1e show higher activ-
ity than the complexes of L1a to L1c, which contain aliphatic
diimines.
All the nickel(II) complexes have also been screened for their in
(ATCC 10145), Bacillus subtilis (ATCC 6633), Klebsiella pneumonia
(ATCC 13883) and gram (+) Staphylococcus aureus (ATCC 12600)
by following our earlier method [29]. The screening results are
given in Table 3. The complexes are all highly potent against
complexes are inactive against E. coli. All the complexes show supe-
rior activity compared to the ligand L and nickel(II) perchlorate.
All the complexes show good antibacterial activity compared to
tetraazamacrocyclic nickel(II) complexes reported in the literature
[38].
[25] (a) R.R. Gagne, L.M. Henling, T.J. Kistenmacher, Inorg. Chem. 19 (1980) 1226;
(b) C. Fraser, B. Bosnich, Inorganics 41 (2002) 1788.
[26] F.V. Lovecchino, E.S. gore, D.H. Bush, J. Am. Chem. Soc. 96 (1974) 3104.
[27] G.K. Bareford, G.M. Freeman, D.G. Erver, Inorg. Chem. 86 (1986) 552.
[28] (a) G.A. Bowmaker, J.P. Williams, J. Chem. Soc., Dalton. Trans. (1993) 3593;
(b) E. Gao, W. Bu, G. Yang, D. Liao, Z. Jiang, S. Yan, G. Wang, J. Chem. Soc., Dalton
Trans. (2000) 1431.
[29] (a) S. Sreedaran, K.S. Bharathi, A.K. Rahiman, L. Jagadish, V. Kaviyarasan, V.
Narayanan, Polyhedron 27 (2008) 2931;
(b) S. Sreedaran, K.S. Bharathi, A.K. Rahiman, K. Rajesh, G. Nirmala, L. Jagadish,
V. Kaviyarasan, V. Narayanan, Polyhedron 27 (2008) 1867.
[30] (a) J. Nishio, H. Okawa, S. Ohtsuka, M. Tomono, Inorg Chim. Acta 218 (1994) 27;
(b) G.A. Melson (Ed.), Coordination Chemistry of Macrocyclic Compounds,
Plenum Press, New York, 1979.
[31] (a) V. Alexander, Chem. Rev. 95 (1995) 273;
(b) M. Yonemura, Y. Matsumura, H. Furutachi, M. Ohba, H. Okawa, D.E. Fenton,
Inorg. Chem. 36 (1997) 2711.
[32] T.C. Higgs, C.J. Carrano, Inorg. Chem. 36 (1997) 298.
[33] (a) R. Mahalakshmy, R. Venkatesan, P.S. Sambasiva Rao, R. Kannappan, T.M.
Rajendiran, Trans. Met. Chem. 29 (2004) 623;
(b) M.J. Mac Lachlan, M.K. Park, L.K. Thompson, Inorg. Chem. 35 (1996) 5492.
[34] C. Belle, C. Beguin, I. luneau, S. Hamman, C. Philouze, J.L. Pierre, F. Thomas, S.
Torelli, Inorg. Chem. 41 (2002) 479.
4. Conclusion
[35] J. Reim, B. Kreks, J. Chem. Soc., Dalton. Trans. (1997) 3793.
[36] P. Akilan, M. Thirumavalan, M. Kandaswamy, Polyhedron 22 (2003) 3483.
[37] P. Amudha, M. Kandaswamy, L. Govindasamy, D. Velmurugan, Inorg. Chem. 37
(1998) 4486.
[38] (a) M.A. Ali, A.H. Mirza, A. Monsur, S. Hossain, M. Nazimuddin, Polyhedron 20
(2001) 1045;
In conclusion, it has been observed that the presence of N-
functionalized cyclam unit in the macrocycle does apparently
improving the catalytic and antimicrobial activity. N-alkylation and
the presence of para substituent of the phenoxide to the phenyl ring
in the macrocycle also influence the electrochemical, magnetic and
electronic spectra of the complexes.
(b) T.G. Roy, S.K.S. Hazari, B.K. Dey, H.A. Miah, C. Bader, D. Rehder, Eur. J. Inorg.
Chem. (2004) 4115.