Exocyclic Methylene Group Acts As a Bioisostere in LNA
A R T I C L E S
investigated for various antisense applications.9 These modifica-
tions were found to be tolerated in both the sense and antisense
strands of siRNA duplexes10 and have found applications in
improving the therapeutic properties of oligonucleotide aptam-
ers.11 2′-Fluoro modified ASOs have also found utility as
miRNA antagonists where they displayed a remarkable im-
provement in in ViVo activity which has been ascribed to altered
subcellular pharmacokinetic properties.12 To further improve
the binding affinity of oligonucleotides, Wengel and Imanishi
independently introduced 2′,4′-methyleneoxy bridged nucleic
acids, also commonly known as Locked nucleic acid 1 (LNA).13
LNA modified oligonucleotides show unprecedented improve-
ment in the thermal stability of oligonucleotide duplexes.14 LNA
ASOs have also demonstrated promising results for down
regulating gene expression,15,16 splice modulation,17 and as
micro RNA (miRNA) antagonists18 in various animal models.
However, some LNA ASOs appear to be associated with an
increased risk for causing hepatotoxicity.19
The synthesis of other 2′,4′-conformationally restricted
nucleoside analogs has been an active area of interest recently
given the successful applications of LNA within the antisense
paradigm.20 As part of a comprehensive program aimed at
understanding the structure-activity relationships (SAR) of
ASOs containing LNA and other related conformationally
restricted 2′,4′-bridged nucleic acids (BNA), we recently
reported the synthesis and biological evaluation of 2′,4′-
constrained Ethyl (cEt) modified nucleic acids 2 (R-cEt) and 3
(S-cEt).21-23 We found that replacing LNA with the cEt
modifications resulted in an improvement in the therapeutic
profile of “gapmer”24 ASOs targeting Mus. musculus phos-
phatase and tensin homologue (mouse PTEN). We speculated
that the improved therapeutic profile of the cEt ASOs was a
result of altered interactions of these ASOs with cellular
macromolecules. To investigate if changing the position of the
alkyl substituent along the 2′,4′-bridging group could provide
further improvements in the therapeutic profile, we wished to
evaluate substituted carbocyclic LNA (cLNA) analogs 4 (R-
methyl-cLNA) and 5 (S-methyl-cLNA) where the 2′-oxygen
atom of LNA was replaced with a substituted carbon atom.
At the time we initiated our synthesis program there were
no literature reports describing the synthesis of carbocyclic LNA
analogs. We envisaged a strategy where both the R- and
S-methyl-cLNA analogs 4 and 5 as well as other cLNA analogs
could be prepared from the methylene-cLNA nucleoside 7 by
synthetic manipulation of the exocyclic double bond. For
example, the double bond can be hydroborated to provide the
hydroxymethyl analog or cleaved oxidatively to provide the keto
compound, both of which could serve as intermediates for a
myriad of chemical transformations (alkylation, fluorination,
reduction, oxidation etc.) to provide other cLNA analogs.
Retrosynthetically, methylene-cLNA 7 could be prepared from
a suitable nucleoside precursor 8 by means of an intramolecular
radical cyclization reaction (Figure 1). This strategy was inspired
by previous work by Chattopadhyaya25,26 and Matsuda,27,28 who
independently showed that it was possible to form intramolecular
carbon-carbon bonds by generating and trapping a radical at
the 2′ position of a nucleoside with a suitable acceptor group.
We were also motivated to evaluate the antisense properties of
the methylene-cLNA 6 itself, as replacing an oxygen atom with
a methylene group has been successfully utilized in the antiviral
arena (Entecavir)29 and in the search for novel nucleic acid
mimics (cyclohexenyl nucleic acids, CeNA).30
While our work was in progress, Chattopadhyaya and co-
workers reported the synthesis and biophysical properties of
oligonucleotides containing a mixture of R- and S-methyl-cLNA
analogs 4 and 5.31 Since the initial report, Chattopadhyaya has
also reported the synthesis and properties of a number of
differentially substituted cENA and cLNA analogs (1a-c,
Figure 2).32-34 Recently, Nielsen and co-workers reported the
synthesis and biophysical properties of a number of carbocyclic
ENA analogs using intramolecular ring closing metathesis and
ene-alkyne metathesis reactions (1d-f, Figure 2).35,36 All the
cLNA and cENA analogs reported thus far show moderate to
(9) Prakash, T. P.; Bhat, B. Curr. Top. Med. Chem. 2007, 7, 641–649.
(10) Allerson, C. R.; Sioufi, N.; Jarres, R.; Prakash, T. P.; Naik, N.; Berdeja,
A.; Wanders, L.; Griffey, R. H.; Swayze, E. E.; Bhat, B. J. Med. Chem.
2005, 48, 901–4.
(11) Ng, E. W.; Shima, D. T.; Calias, P.; Cunningham, E. T., Jr.; Guyer,
D. R.; Adamis, A. P. Nat. ReV. Drug DiscoVery 2006, 5, 123–32.
(12) Davis, S.; Propp, S.; Freier, S. M.; Jones, L. E.; Serra, M. J.; Kinberger,
G.; Bhat, B.; Swayze, E. E.; Bennett, C. F.; Esau, C. Nucleic Acids
Res. 2009, 37, 70–7.
(13) Obika, S.; Nanbu, D.; Hari, Y.; Andoh, J.-I.; Morio, K.-I.; Doi, T.;
Imanishi, T. Tetrahedron Lett. 1998, 39, 5401–5404.
(14) Wengel, J. Acc. Chem. Res. 1999, 32, 301–310.
(15) Sapra, P.; Wang, M.; Bandaru, R.; Zhao, H.; Greenberger, L. M.;
Horak, I. D. Nucleosides, Nucleotides Nucleic Acids 2010, 29, 97–
112.
(25) Xi, Z.; Rong, J.; Chattopadhyaya, J. Tetrahedron 1994, 50, 5255–
5272.
(26) Xi, Z.; Agback, P.; Plavec, J.; Sandstro¨m, A.; Chattopadhyaya, J.
Tetrahedron 1992, 48, 349–370.
(16) Fluiter, K.; Frieden, M.; Vreijling, J.; Rosenbohm, C.; De Wissel,
M. B.; Christensen, S. M.; Koch, T.; Orum, H.; Baas, F. ChemBioChem
2005, 6, 1104–9.
(27) Sukeda, M.; Shuto, S.; Sugimoto, I.; Ichikawa, S.; Matsuda, A. J. Org.
Chem. 2000, 65, 8988–8996.
(17) Graziewicz, M. A.; Tarrant, T. K.; Buckley, B.; Roberts, J.; Fulton,
L.; Hansen, H.; Orum, H.; Kole, R.; Sazani, P. Mol. Ther. 2008, 16,
1316–22.
(28) Sukeda, M.; Ichikawa, S.; Matsuda, A.; Shuto, S. J. Org. Chem. 2003,
68, 3465–3475.
(29) Bisacchi, G. S.; Chao, S. T.; Bachard, C.; Daris, J. P.; Innaimo, S.;
Jacobs, G. A.; Kocy, O.; Lapointe, P.; Martel, A.; Merchant, Z.;
Slusarchyk, W. A.; Sundeen, J. E.; Young, M. G.; Colonno, R.; Zahler,
R. Bioorg. Med. Chem. Lett. 1997, 7, 127–132.
(18) Lanford, R. E.; Hildebrandt-Eriksen, E. S.; Petri, A.; Persson, R.;
Lindow, M.; Munk, M. E.; Kauppinen, S.; Orum, H. Science 2010,
327, 198–201.
(19) Swayze, E. E.; Siwkowski, A. M.; Wancewicz, E. V.; Migawa, M. T.;
Wyrzykiewicz, T. K.; Hung, G.; Monia, B. P.; Bennett, C. F. Nucleic
Acids Res. 2007, 35, 687–700.
(30) Wang, J.; Verbeure, B.; Luyten, I.; Lescrinier, E.; Froeyen, M.;
Hendrix, C.; Rosemeyer, H.; Seela, F.; Van Aerschot, A.; Herdewijn,
P. J. Am. Chem. Soc. 2000, 122, 8595–8602.
(20) Zhou, C.; Chattopadhyaya, J. Curr. Opin. Drug DiscoVery DeV. 2009,
12, 876–898.
(31) Srivastava, P.; Barman, J.; Pathmasiri, W.; Plashkevych, O.; Wenska,
M.; Chattopadhyaya, J. J. Am. Chem. Soc. 2007, 129, 8362–8379.
(32) Zhou, C.; Plashkevych, O.; Chattopadhyaya, J. J. Org. Chem. 2009,
74, 3248–3265.
(21) Swayze, E. E.; Seth, P. P. PCT Int. Appl. 2007, WO 2007090071.
(22) Seth, P. P.; Vasquez, G.; Allerson, C. A.; Berdeja, A.; Gaus, H.;
Kinberger, G. A.; Prakash, T. P.; Migawa, M. T.; Bhat, B.; Swayze,
E. E. J. Org. Chem. 2010, 75, 1569–81.
(33) Zhou, C.; Liu, Y.; Andaloussi, M.; Badgujar, N.; Plashkevych, O.;
Chattopadhyaya, J. J. Org. Chem. 2009, 74, 118–134.
(34) Xu, J.; Liu, Y.; Dupouy, C.; Chattopadhyaya, J. J. Org. Chem. 2009,
74, 6534–6554.
(23) Seth, P. P.; Siwkowski, A.; Allerson, C. R.; Vasquez, G.; Lee, S.;
Prakash, T. P.; Wancewicz, E. V.; Witchell, D.; Swayze, E. E. J. Med.
Chem. 2009, 52, 10–3.
˜
(35) Kumar, S.; Hansen, M. H.; AlbA|k, N.; Steffansen, S. I.; Petersen,
(24) Monia, B. P.; Lesnik, E. A.; Gonzalez, C.; Lima, W. F.; McGee, D.;
Guinosso, C. J.; Kawasaki, A. M.; Cook, P. D.; Freier, S. M. J. Biol.
Chem. 1993, 268, 14514–22.
M.; Nielsen, P. J. Org. Chem. 2009, 74, 6756–6769.
(36) Albæk, N.; Petersen, M.; Nielsen, P. J. Org. Chem. 2006, 71, 7731–
7740.
9
J. AM. CHEM. SOC. VOL. 132, NO. 42, 2010 14943