the alkyl-substituted vicinal diamines are difficult to syn-
thesize by the rearrangement reaction10 and how these
difficulties may be overcome.
lectively in excellent yield (>99%) when the diamine is
added to 2 or more equiv of the aldehyde.11
Figure 1a shows the crystal structure of the fused imida-
zolidine-dihydro-1,3-oxazine ring (3).12 There are two new
stereogenic centers in the product (both R configuration
(Scheme 1)). One internal hydrogen bond can be seen
between the phenolic group and the secondary amine group
(O···N, 2.73 Å; H···N, 1.99 Å; O-H, 0.84 Å). The global
energy minimum structure of 313 (Figure 1b) is in excellent
agreement with the crystal structure and the solution structure
as determined by 2D 1H NMR (Figure S1, Supporting
Information). Thus the most stable of the many possible
configurational and conformational isomers of 3 is the one
that is formed.
Scheme 1
When benzaldehyde is added to 1, the corresponding
diimine (2) is formed readily followed by the rearrangement
reaction at ambient temperature.2 In sharp contrast, when
isobutyraldehyde is added to 1, a fused imidazolidine-
dihydro-1,3-oxazine ring compound (3) is formed. In prin-
ciple, 1, 2, or 3 equiv of isobutyraldehyde could add to 1 to
form one, two or three new rings, respectively. Fourteen
different products could result from the cyclization reactions
including all possible stereoisomers.11 Surprisingly, only one
major product (3) is formed stereospecifically and regiose-
Figure 1. (a) Crystal structure of 3 (50% thermal ellipsoid). (b)
Global energy minimum structure of 3.
Although 3 is stable at room temperature, it cleanly gives
the rearranged diimine (5a) when heated at 150 °C for 3 h
(Scheme 2). We propose that 3 is in equilibrium with the
diimine (4a), which rearranges to give the product (5a).
Hydrolysis of 5a gave (S,S)-1,2-diamino-1,2-diisopropyl-
ethane dihydrochloride (6a), which has been previously
synthesized by a different route for the purpose of making
NHE3 inhibitors.14 1H NMR shows that the concentration
of the diimine intermediate (4a) does not accumulate to any
observable extent during the conversion of 3 to 5a. Thus
the equilibrium appears to greatly favor 3 over 4a.
(5) (a) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science
1997, 277, 936. (b) Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691.
(c) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40. (d)
Yamakawa, M.; Yamada, I.; Noyori, R. Angew. Chem., Int. Ed. 2001, 40,
2818. (e) Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am. Chem. Soc.
2006, 128, 1840. (f) Kim, H.; Yen, C.; Preston, P.; Chin, J. Org. Lett. 2006,
8, 5239.
(6) Kotti, S. R. S. S.; Timmons, C.; Li, G. Chem. Biol. Drug Des. 2006,
67, 101.
(7) (a) Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.;
Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.;
Laver, G.; Stevens, R. C. J. Am. Chem. Soc. 1997, 119, 681. (b) Albrecht,
S.; Harrington, P.; Iding, H.; Karpf, M.; Trussardi, R.; Wirz, B.; Zutter, U.
Chimia 2004, 58, 621. (c) Yeung, Y.-Y.; Hong, S.; Corey, E. J. J. Am.
Chem. Soc. 2006, 128, 6310. (d) Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai,
M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 6312. (e) Cong, X.; Yao,
Z.-J. J. Org. Chem. 2006, 71, 5365. (f) Satoh, N.; Akiba, T.; Yokoshima,
S.; Fukuyama, T. Angew. Chem., Int. Ed. 2007, 46, 5734. (g) Bromfield,
K. M.; Grade´n, H.; Hagberg, D. P.; Olsson, T.; Kann, N. Chem. Commun.
2007, 3183. (h) Shie, J.-J.; Fang, J.-M.; Wang, S.-Y.; Tsai, K.-C.; Cheng,
Y.-S. E.; Yang, A.-S.; Hsiao, S.-C.; Su, C.-Y.; Wong, C.-H. J. Am. Chem.
Soc. 2007, 129, 11892. For recent reviews, see: (i) Farina, V.; Brown, J. D.
Angew. Chem., Int. Ed. 2006, 45, 7330. (j) Shibasaki, M.; Kanai, M. Eur.
J. Org. Chem. 2008, 1839.
A variety of alkyl aldehydes may be used to make alkyl
diamines by our method (Table 1). The enantioselectivity
of the rearrangement reaction was determined by HPLC.11
(R,R)-3 gave (S,S)-5a in 93% yield with no observable loss
(12) Crystal structure of 3: C22H28N2O2, T ) 100(2) K, orthorhombic,
P2(1)2(1)2(1), Z ) 8, a ) 9.79070(10) Å, b ) 18.3356(2) Å, c ) 22.0661(2)
Å, a ) 90°, b ) 90°, g ) 90°, V ) 3961.27(7) Å3, R1 ) 0.0246, wR2 )
0.0648 for I > 2σ(I), GOF on F2 ) 1.013. Crystal structure of 5b:
C28H36N2O2, T ) 150(2) K, orthorhombic, P2(1)2(1)2(1), Z ) 4, a )
5.9303(3) Å, b ) 10.3195(7) Å, c ) 39.850(3) Å, a ) 90°, b ) 90°, g )
90°, V ) 2438.7(3) Å3, R1 ) 0.0514, wR2 ) 0.1223 for I > 2σ(I), GOF on
F2 ) 1.043. Crystal structure of 6b: C14H32Cl2.67N2O0.67, T ) 150(1) K,
cubic, I(2)1(3), Z ) 12, a ) 17.9117(6) Å, b ) 17.9117(6) Å, c )
17.9117(6) Å, a ) 90°, b ) 90°, g ) 90°, V ) 5746.6(3) Å3, R1 ) 0.0468,
wR2 ) 0.1041 for I > 2σ(I), GOF on F2 ) 1.022.
(13) Geometry optimization was performed at the B3LYP/6-31G(d) level
using Spartan 06 Windows from Wavefunction, Inc.
(14) (a) Heinelt, U.; Lang, H.-J.; Hofmeister, A.; Wirth, K. PCT Int.
Appl. WO2003053434, 2003. (b) Roland, S.; Mangeney, P.; Alexakis, A.
Synthesis 1999, 228.
(8) (a) Palomo, C.; Aizpurua, J. M.; Legido, M.; Galarza, R.; Deya,
P. M.; Dunoguès, J.; Picard, J. P.; Ricci, A.; Seconi, G. Angew. Chem., Int.
Ed. Engl. 1996, 35, 1239. (b) Misner, J. W.; Fisher, J. W.; Gardner, J. P.;
Pedersen, S. W.; Trinkle, K. L.; Jackson, B. G.; Zhang, T. Y. Tetrahedron
Lett. 2003, 44, 5991. (c) Ciufolini, M. A.; Dong, Q. Chem. Commun. 1996,
881.
(9) (a) Kidani, Y.; Inagaki, K.; Iigo, M.; Hoshi, A.; Kuretani, K. J. Med.
Chem. 1978, 21, 1315. (b) Dullin, A.; Dufrasne, F.; Gelbcke, M.; Gust, R.
Arch. Pharm., Pharm. Med. Chem. 2004, 337, 654. (c) Boga, C.; Fiorelli,
C.; Savoia, D. Synthesis 2006, 285.
(10) (a) Roth, W. R.; Lennartz, H.-W.; Doering, W. von E.; Birladeanu,
L.; Guyton, C. A.; Kitagawa, T. J. Am. Chem. Soc. 1990, 112, 1722. (b)
Gajewski, J. J. J. Am. Chem. Soc. 1979, 101, 4393.
(11) See Supporting Information.
158
Org. Lett., Vol. 11, No. 1, 2009